Loading…

Low hydrogen contents in the cores of terrestrial planets

Hydrogen has been thought to be an important light element in Earth's core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2018-03, Vol.4 (3), p.e1701876-e1701876
Main Authors: Clesi, Vincent, Bouhifd, Mohamed Ali, Bolfan-Casanova, Nathalie, Manthilake, Geeth, Schiavi, Federica, Raepsaet, Caroline, Bureau, Hélène, Khodja, Hicham, Andrault, Denis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-4b23f84c7ac135473db6d8f0132fa3812670e97e01465e52254df99396b861ff3
cites cdi_FETCH-LOGICAL-c424t-4b23f84c7ac135473db6d8f0132fa3812670e97e01465e52254df99396b861ff3
container_end_page e1701876
container_issue 3
container_start_page e1701876
container_title Science advances
container_volume 4
creator Clesi, Vincent
Bouhifd, Mohamed Ali
Bolfan-Casanova, Nathalie
Manthilake, Geeth
Schiavi, Federica
Raepsaet, Caroline
Bureau, Hélène
Khodja, Hicham
Andrault, Denis
description Hydrogen has been thought to be an important light element in Earth's core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5 to 20 GPa, oxygen fugacity varying within IW-3.7 and IW-0.2 (0.2 to 3.7 log units lower than iron-wüstite buffer), and Fe alloys typical of planetary cores. We report hydrogen metal-silicate partition coefficients of ~2 × 10 , up to two orders of magnitude lower than reported previously, and indicative of lithophile behavior. Our results imply H contents of ~60 ppm in the Earth and Martian cores. A simple water budget suggests that 90% of the water initially present in planetary building blocks was lost during planetary accretion. The retained water segregated preferentially into planetary mantles.
doi_str_mv 10.1126/sciadv.1701876
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5851667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014950931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-4b23f84c7ac135473db6d8f0132fa3812670e97e01465e52254df99396b861ff3</originalsourceid><addsrcrecordid>eNpdkc9LwzAcxYMobsxdPUqPeujMjyZpLsIY6oSBFz2HNE3WStfMpJvsvzelc6infEM-35f3eABcIzhDCLP7oGtV7meIQ5RzdgbGmHCaYprl57_mEZiG8AEhRBljFIlLMMKCZiwCYyBW7iupDqV3a9Mm2rWdabuQ1G3SVSbevQmJs0lnfJw6X6sm2TaqNV24AhdWNcFMj-cEvD89vi2W6er1-WUxX6U6w1mXZgUmNs80VxoRmnFSFqzMLUQEW0XyGINDI7jp3VFDcXRcWiGIYEXOkLVkAh4G3e2u2JhSR39eNXLr643yB-lULf--tHUl124vaU4RYzwK3A0C1b-15XwltVESIk6YoHSPInt7_My7z11MLDd10KbpI7tdkDjaFBQK0qOzAdXeheCNPWkjKPt65FCPPNYTF25-BznhP2WQbz3Nixw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014950931</pqid></control><display><type>article</type><title>Low hydrogen contents in the cores of terrestrial planets</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Clesi, Vincent ; Bouhifd, Mohamed Ali ; Bolfan-Casanova, Nathalie ; Manthilake, Geeth ; Schiavi, Federica ; Raepsaet, Caroline ; Bureau, Hélène ; Khodja, Hicham ; Andrault, Denis</creator><creatorcontrib>Clesi, Vincent ; Bouhifd, Mohamed Ali ; Bolfan-Casanova, Nathalie ; Manthilake, Geeth ; Schiavi, Federica ; Raepsaet, Caroline ; Bureau, Hélène ; Khodja, Hicham ; Andrault, Denis</creatorcontrib><description>Hydrogen has been thought to be an important light element in Earth's core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5 to 20 GPa, oxygen fugacity varying within IW-3.7 and IW-0.2 (0.2 to 3.7 log units lower than iron-wüstite buffer), and Fe alloys typical of planetary cores. We report hydrogen metal-silicate partition coefficients of ~2 × 10 , up to two orders of magnitude lower than reported previously, and indicative of lithophile behavior. Our results imply H contents of ~60 ppm in the Earth and Martian cores. A simple water budget suggests that 90% of the water initially present in planetary building blocks was lost during planetary accretion. The retained water segregated preferentially into planetary mantles.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1701876</identifier><identifier>PMID: 29546237</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science (AAAS)</publisher><subject>Chemical Sciences ; Earth Sciences ; Geochemistry ; Material chemistry ; Physical Sciences ; Planetary Science ; SciAdv r-articles ; Sciences of the Universe</subject><ispartof>Science advances, 2018-03, Vol.4 (3), p.e1701876-e1701876</ispartof><rights>Attribution - NonCommercial</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-4b23f84c7ac135473db6d8f0132fa3812670e97e01465e52254df99396b861ff3</citedby><cites>FETCH-LOGICAL-c424t-4b23f84c7ac135473db6d8f0132fa3812670e97e01465e52254df99396b861ff3</cites><orcidid>0000-0001-6999-1090 ; 0000-0002-9921-4572 ; 0000-0001-9801-1581 ; 0000-0002-1722-1331 ; 0000-0002-1859-1107 ; 0000-0001-8161-081X ; 0000-0001-8965-6089 ; 0000-0002-5506-5122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851667/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851667/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29546237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01736955$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Clesi, Vincent</creatorcontrib><creatorcontrib>Bouhifd, Mohamed Ali</creatorcontrib><creatorcontrib>Bolfan-Casanova, Nathalie</creatorcontrib><creatorcontrib>Manthilake, Geeth</creatorcontrib><creatorcontrib>Schiavi, Federica</creatorcontrib><creatorcontrib>Raepsaet, Caroline</creatorcontrib><creatorcontrib>Bureau, Hélène</creatorcontrib><creatorcontrib>Khodja, Hicham</creatorcontrib><creatorcontrib>Andrault, Denis</creatorcontrib><title>Low hydrogen contents in the cores of terrestrial planets</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Hydrogen has been thought to be an important light element in Earth's core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5 to 20 GPa, oxygen fugacity varying within IW-3.7 and IW-0.2 (0.2 to 3.7 log units lower than iron-wüstite buffer), and Fe alloys typical of planetary cores. We report hydrogen metal-silicate partition coefficients of ~2 × 10 , up to two orders of magnitude lower than reported previously, and indicative of lithophile behavior. Our results imply H contents of ~60 ppm in the Earth and Martian cores. A simple water budget suggests that 90% of the water initially present in planetary building blocks was lost during planetary accretion. The retained water segregated preferentially into planetary mantles.</description><subject>Chemical Sciences</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Material chemistry</subject><subject>Physical Sciences</subject><subject>Planetary Science</subject><subject>SciAdv r-articles</subject><subject>Sciences of the Universe</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LwzAcxYMobsxdPUqPeujMjyZpLsIY6oSBFz2HNE3WStfMpJvsvzelc6infEM-35f3eABcIzhDCLP7oGtV7meIQ5RzdgbGmHCaYprl57_mEZiG8AEhRBljFIlLMMKCZiwCYyBW7iupDqV3a9Mm2rWdabuQ1G3SVSbevQmJs0lnfJw6X6sm2TaqNV24AhdWNcFMj-cEvD89vi2W6er1-WUxX6U6w1mXZgUmNs80VxoRmnFSFqzMLUQEW0XyGINDI7jp3VFDcXRcWiGIYEXOkLVkAh4G3e2u2JhSR39eNXLr643yB-lULf--tHUl124vaU4RYzwK3A0C1b-15XwltVESIk6YoHSPInt7_My7z11MLDd10KbpI7tdkDjaFBQK0qOzAdXeheCNPWkjKPt65FCPPNYTF25-BznhP2WQbz3Nixw</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Clesi, Vincent</creator><creator>Bouhifd, Mohamed Ali</creator><creator>Bolfan-Casanova, Nathalie</creator><creator>Manthilake, Geeth</creator><creator>Schiavi, Federica</creator><creator>Raepsaet, Caroline</creator><creator>Bureau, Hélène</creator><creator>Khodja, Hicham</creator><creator>Andrault, Denis</creator><general>American Association for the Advancement of Science (AAAS)</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6999-1090</orcidid><orcidid>https://orcid.org/0000-0002-9921-4572</orcidid><orcidid>https://orcid.org/0000-0001-9801-1581</orcidid><orcidid>https://orcid.org/0000-0002-1722-1331</orcidid><orcidid>https://orcid.org/0000-0002-1859-1107</orcidid><orcidid>https://orcid.org/0000-0001-8161-081X</orcidid><orcidid>https://orcid.org/0000-0001-8965-6089</orcidid><orcidid>https://orcid.org/0000-0002-5506-5122</orcidid></search><sort><creationdate>20180314</creationdate><title>Low hydrogen contents in the cores of terrestrial planets</title><author>Clesi, Vincent ; Bouhifd, Mohamed Ali ; Bolfan-Casanova, Nathalie ; Manthilake, Geeth ; Schiavi, Federica ; Raepsaet, Caroline ; Bureau, Hélène ; Khodja, Hicham ; Andrault, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-4b23f84c7ac135473db6d8f0132fa3812670e97e01465e52254df99396b861ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical Sciences</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Material chemistry</topic><topic>Physical Sciences</topic><topic>Planetary Science</topic><topic>SciAdv r-articles</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clesi, Vincent</creatorcontrib><creatorcontrib>Bouhifd, Mohamed Ali</creatorcontrib><creatorcontrib>Bolfan-Casanova, Nathalie</creatorcontrib><creatorcontrib>Manthilake, Geeth</creatorcontrib><creatorcontrib>Schiavi, Federica</creatorcontrib><creatorcontrib>Raepsaet, Caroline</creatorcontrib><creatorcontrib>Bureau, Hélène</creatorcontrib><creatorcontrib>Khodja, Hicham</creatorcontrib><creatorcontrib>Andrault, Denis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clesi, Vincent</au><au>Bouhifd, Mohamed Ali</au><au>Bolfan-Casanova, Nathalie</au><au>Manthilake, Geeth</au><au>Schiavi, Federica</au><au>Raepsaet, Caroline</au><au>Bureau, Hélène</au><au>Khodja, Hicham</au><au>Andrault, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low hydrogen contents in the cores of terrestrial planets</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>4</volume><issue>3</issue><spage>e1701876</spage><epage>e1701876</epage><pages>e1701876-e1701876</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Hydrogen has been thought to be an important light element in Earth's core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5 to 20 GPa, oxygen fugacity varying within IW-3.7 and IW-0.2 (0.2 to 3.7 log units lower than iron-wüstite buffer), and Fe alloys typical of planetary cores. We report hydrogen metal-silicate partition coefficients of ~2 × 10 , up to two orders of magnitude lower than reported previously, and indicative of lithophile behavior. Our results imply H contents of ~60 ppm in the Earth and Martian cores. A simple water budget suggests that 90% of the water initially present in planetary building blocks was lost during planetary accretion. The retained water segregated preferentially into planetary mantles.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science (AAAS)</pub><pmid>29546237</pmid><doi>10.1126/sciadv.1701876</doi><orcidid>https://orcid.org/0000-0001-6999-1090</orcidid><orcidid>https://orcid.org/0000-0002-9921-4572</orcidid><orcidid>https://orcid.org/0000-0001-9801-1581</orcidid><orcidid>https://orcid.org/0000-0002-1722-1331</orcidid><orcidid>https://orcid.org/0000-0002-1859-1107</orcidid><orcidid>https://orcid.org/0000-0001-8161-081X</orcidid><orcidid>https://orcid.org/0000-0001-8965-6089</orcidid><orcidid>https://orcid.org/0000-0002-5506-5122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2018-03, Vol.4 (3), p.e1701876-e1701876
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5851667
source American Association for the Advancement of Science; PubMed Central
subjects Chemical Sciences
Earth Sciences
Geochemistry
Material chemistry
Physical Sciences
Planetary Science
SciAdv r-articles
Sciences of the Universe
title Low hydrogen contents in the cores of terrestrial planets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20hydrogen%20contents%20in%20the%20cores%20of%20terrestrial%20planets&rft.jtitle=Science%20advances&rft.au=Clesi,%20Vincent&rft.date=2018-03-14&rft.volume=4&rft.issue=3&rft.spage=e1701876&rft.epage=e1701876&rft.pages=e1701876-e1701876&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1701876&rft_dat=%3Cproquest_pubme%3E2014950931%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-4b23f84c7ac135473db6d8f0132fa3812670e97e01465e52254df99396b861ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014950931&rft_id=info:pmid/29546237&rfr_iscdi=true