Loading…
Vitamin D-Binding Protein Polymorphisms, 25-Hydroxyvitamin D, Sunshine and Multiple Sclerosis
Blacks have different dominant polymorphisms in the vitamin D-binding protein (DBP) gene that result in higher bioavailable vitamin D than whites. This study tested whether the lack of association between 25-hydroxyvitamin D (25OHD) and multiple sclerosis (MS) risk in blacks and Hispanics is due to...
Saved in:
Published in: | Nutrients 2018-02, Vol.10 (2), p.184 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Blacks have different dominant polymorphisms in the vitamin D-binding protein (DBP) gene that result in higher bioavailable vitamin D than whites. This study tested whether the lack of association between 25-hydroxyvitamin D (25OHD) and multiple sclerosis (MS) risk in blacks and Hispanics is due to differences in these common polymorphisms (rs7041, rs4588). We recruited incident MS cases and controls (blacks 116 cases/131 controls; Hispanics 183/197; whites 247/267) from Kaiser Permanente Southern California. AA is the dominant rs7041 genotype in blacks (70.0%) whereas C is the dominant allele in whites (79.0% AC/CC) and Hispanics (77.1%). Higher 25OHD levels were associated with a lower risk of MS in whites who carried at least one copy of the C allele but not AA carriers. No association was found in Hispanics or blacks regardless of genotype. Higher ultraviolet radiation exposure was associated with a lower risk of MS in blacks (OR = 0.06), Hispanics and whites who carried at least one copy of the C allele but not in others. Racial/ethnic variations in bioavailable vitamin D do not explain the lack of association between 25OHD and MS in blacks and Hispanics. These findings further challenge the biological plausibility of vitamin D deficiency as causal for MS. |
---|---|
ISSN: | 2072-6643 2072-6643 |
DOI: | 10.3390/nu10020184 |