Loading…

Solution structure of extracellular loop of human β4 subunit of BK channel and its biological implication on ChTX sensitivity

Large-conductance Ca 2+ - and voltage-dependent K + (BK) channels display diverse biological functions while their pore-forming α subunit is coded by a single Slo1 gene. The variety of BK channels is correlated with the effects of BKα coexpression with auxiliary β (β1-β4) subunits, as well as newly...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-03, Vol.8 (1), p.4571-4571, Article 4571
Main Authors: Wang, Yanting, Lan, Wenxian, Yan, Zhenzhen, Gao, Jing, Liu, Xinlian, Wang, Sheng, Guo, Xiying, Wang, Chunxi, Zhou, Hu, Ding, Jiuping, Cao, Chunyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-32a50d306dbf227703758488e50150d139f29c0ce853cf5cb2ac564ad757902c3
cites cdi_FETCH-LOGICAL-c474t-32a50d306dbf227703758488e50150d139f29c0ce853cf5cb2ac564ad757902c3
container_end_page 4571
container_issue 1
container_start_page 4571
container_title Scientific reports
container_volume 8
creator Wang, Yanting
Lan, Wenxian
Yan, Zhenzhen
Gao, Jing
Liu, Xinlian
Wang, Sheng
Guo, Xiying
Wang, Chunxi
Zhou, Hu
Ding, Jiuping
Cao, Chunyang
description Large-conductance Ca 2+ - and voltage-dependent K + (BK) channels display diverse biological functions while their pore-forming α subunit is coded by a single Slo1 gene. The variety of BK channels is correlated with the effects of BKα coexpression with auxiliary β (β1-β4) subunits, as well as newly defined γ subunits. Charybdotoxin (ChTX) blocks BK channel through physically occluding the K + -conduction pore. Human brain enriched β4 subunit (hβ4) alters the conductance-voltage curve, slows activation and deactivation time courses of BK channels. Its extracellular loop (hβ4-loop) specifically impedes ChTX to bind BK channel pore. However, the structure of β4 subunit’s extracellular loop and the molecular mechanism for gating kinetics, toxin sensitivity of BK channels regulated by β4 are still unclear. To address them, here, we first identified four disulfide bonds in hβ4-loop by mass spectroscopy and NMR techniques. Then we determined its three-dimensional solution structure, performed NMR titration and electrophysiological analysis, and found that residue Asn123 of β4 subunit regulated the gating and pharmacological characteristics of BK channel. Finally, by constructing structure models of BKα/β4 and thermodynamic double-mutant cycle analysis, we proposed that BKα subunit might interact with β4 subunit through the conserved residue Glu264(BKα) coupling with residue Asn123(β4).
doi_str_mv 10.1038/s41598-018-23016-y
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5854672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014352703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-32a50d306dbf227703758488e50150d139f29c0ce853cf5cb2ac564ad757902c3</originalsourceid><addsrcrecordid>eNp9UUtuFDEQtSJQEoVcgEVkiQ2bBn-n2xskGEESEYkFicTOcrvdM47c9uBPlNlwKA6SM-GZCUlgEcuS6_PqVZUfAK8xeocR7d4nhrnoGoS7hlCEZ816DxwSxHh1CXnxxD4Axyldo3o4EQyLfXBABGecU3EIfn0PrmQbPEw5Fp1LNDCM0NzmqLRxrjgVoQthtYkuy6Q8vPvNYCp98TZvgp--Qr1U3hsHlR-gzQn2NriwsFo5aKeVq8a2Q73z5eUPmIxPNtsbm9evwMtRuWSO798jcPXl8-X8rLn4dno-_3jRaNay3FCiOBoomg39SEjbItryjnWd4QjXBKZiJEIjbTpO9ch1T5TmM6aGlrcCEU2PwIcd76r0kxm08XU_J1fRTiquZVBW_pvxdikX4UbyjrNZSyrB23uCGH4Wk7KcbNp8kPImlCQJwkzwOqGo0Df_Qa9Dib6ut0VRTur8FUV2KB1DStGMD8NgJDcKy53CsiostwrLdS06ebrGQ8lfPSuA7gCppvzCxMfez9D-AWG5tA4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014352703</pqid></control><display><type>article</type><title>Solution structure of extracellular loop of human β4 subunit of BK channel and its biological implication on ChTX sensitivity</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Yanting ; Lan, Wenxian ; Yan, Zhenzhen ; Gao, Jing ; Liu, Xinlian ; Wang, Sheng ; Guo, Xiying ; Wang, Chunxi ; Zhou, Hu ; Ding, Jiuping ; Cao, Chunyang</creator><creatorcontrib>Wang, Yanting ; Lan, Wenxian ; Yan, Zhenzhen ; Gao, Jing ; Liu, Xinlian ; Wang, Sheng ; Guo, Xiying ; Wang, Chunxi ; Zhou, Hu ; Ding, Jiuping ; Cao, Chunyang</creatorcontrib><description>Large-conductance Ca 2+ - and voltage-dependent K + (BK) channels display diverse biological functions while their pore-forming α subunit is coded by a single Slo1 gene. The variety of BK channels is correlated with the effects of BKα coexpression with auxiliary β (β1-β4) subunits, as well as newly defined γ subunits. Charybdotoxin (ChTX) blocks BK channel through physically occluding the K + -conduction pore. Human brain enriched β4 subunit (hβ4) alters the conductance-voltage curve, slows activation and deactivation time courses of BK channels. Its extracellular loop (hβ4-loop) specifically impedes ChTX to bind BK channel pore. However, the structure of β4 subunit’s extracellular loop and the molecular mechanism for gating kinetics, toxin sensitivity of BK channels regulated by β4 are still unclear. To address them, here, we first identified four disulfide bonds in hβ4-loop by mass spectroscopy and NMR techniques. Then we determined its three-dimensional solution structure, performed NMR titration and electrophysiological analysis, and found that residue Asn123 of β4 subunit regulated the gating and pharmacological characteristics of BK channel. Finally, by constructing structure models of BKα/β4 and thermodynamic double-mutant cycle analysis, we proposed that BKα subunit might interact with β4 subunit through the conserved residue Glu264(BKα) coupling with residue Asn123(β4).</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-23016-y</identifier><identifier>PMID: 29545539</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/269/1151 ; 631/535/878/1263 ; Calcium channels (voltage-gated) ; Calcium conductance ; Channel gating ; Charybdotoxin ; Charybdotoxin - chemistry ; Charybdotoxin - metabolism ; Conduction ; Cryoelectron Microscopy ; Deactivation ; Disulfide bonds ; Disulfides - chemistry ; Humanities and Social Sciences ; Humans ; Kinetics ; Large-Conductance Calcium-Activated Potassium Channels - chemistry ; Large-Conductance Calcium-Activated Potassium Channels - genetics ; Large-Conductance Calcium-Activated Potassium Channels - metabolism ; Mass Spectrometry ; Mass spectroscopy ; Models, Molecular ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Potassium ; Potassium channels (calcium-gated) ; Potassium channels (voltage-gated) ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation &amp; purification ; Science ; Science (multidisciplinary) ; Titration ; Toxins</subject><ispartof>Scientific reports, 2018-03, Vol.8 (1), p.4571-4571, Article 4571</ispartof><rights>The Author(s) 2018</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-32a50d306dbf227703758488e50150d139f29c0ce853cf5cb2ac564ad757902c3</citedby><cites>FETCH-LOGICAL-c474t-32a50d306dbf227703758488e50150d139f29c0ce853cf5cb2ac564ad757902c3</cites><orcidid>0000-0002-2509-6761 ; 0000-0001-7006-4737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2014352703/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2014352703?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29545539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yanting</creatorcontrib><creatorcontrib>Lan, Wenxian</creatorcontrib><creatorcontrib>Yan, Zhenzhen</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Liu, Xinlian</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Guo, Xiying</creatorcontrib><creatorcontrib>Wang, Chunxi</creatorcontrib><creatorcontrib>Zhou, Hu</creatorcontrib><creatorcontrib>Ding, Jiuping</creatorcontrib><creatorcontrib>Cao, Chunyang</creatorcontrib><title>Solution structure of extracellular loop of human β4 subunit of BK channel and its biological implication on ChTX sensitivity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Large-conductance Ca 2+ - and voltage-dependent K + (BK) channels display diverse biological functions while their pore-forming α subunit is coded by a single Slo1 gene. The variety of BK channels is correlated with the effects of BKα coexpression with auxiliary β (β1-β4) subunits, as well as newly defined γ subunits. Charybdotoxin (ChTX) blocks BK channel through physically occluding the K + -conduction pore. Human brain enriched β4 subunit (hβ4) alters the conductance-voltage curve, slows activation and deactivation time courses of BK channels. Its extracellular loop (hβ4-loop) specifically impedes ChTX to bind BK channel pore. However, the structure of β4 subunit’s extracellular loop and the molecular mechanism for gating kinetics, toxin sensitivity of BK channels regulated by β4 are still unclear. To address them, here, we first identified four disulfide bonds in hβ4-loop by mass spectroscopy and NMR techniques. Then we determined its three-dimensional solution structure, performed NMR titration and electrophysiological analysis, and found that residue Asn123 of β4 subunit regulated the gating and pharmacological characteristics of BK channel. Finally, by constructing structure models of BKα/β4 and thermodynamic double-mutant cycle analysis, we proposed that BKα subunit might interact with β4 subunit through the conserved residue Glu264(BKα) coupling with residue Asn123(β4).</description><subject>631/45/269/1151</subject><subject>631/535/878/1263</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium conductance</subject><subject>Channel gating</subject><subject>Charybdotoxin</subject><subject>Charybdotoxin - chemistry</subject><subject>Charybdotoxin - metabolism</subject><subject>Conduction</subject><subject>Cryoelectron Microscopy</subject><subject>Deactivation</subject><subject>Disulfide bonds</subject><subject>Disulfides - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - chemistry</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - genetics</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Potassium</subject><subject>Potassium channels (calcium-gated)</subject><subject>Potassium channels (voltage-gated)</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Titration</subject><subject>Toxins</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UUtuFDEQtSJQEoVcgEVkiQ2bBn-n2xskGEESEYkFicTOcrvdM47c9uBPlNlwKA6SM-GZCUlgEcuS6_PqVZUfAK8xeocR7d4nhrnoGoS7hlCEZ816DxwSxHh1CXnxxD4Axyldo3o4EQyLfXBABGecU3EIfn0PrmQbPEw5Fp1LNDCM0NzmqLRxrjgVoQthtYkuy6Q8vPvNYCp98TZvgp--Qr1U3hsHlR-gzQn2NriwsFo5aKeVq8a2Q73z5eUPmIxPNtsbm9evwMtRuWSO798jcPXl8-X8rLn4dno-_3jRaNay3FCiOBoomg39SEjbItryjnWd4QjXBKZiJEIjbTpO9ch1T5TmM6aGlrcCEU2PwIcd76r0kxm08XU_J1fRTiquZVBW_pvxdikX4UbyjrNZSyrB23uCGH4Wk7KcbNp8kPImlCQJwkzwOqGo0Df_Qa9Dib6ut0VRTur8FUV2KB1DStGMD8NgJDcKy53CsiostwrLdS06ebrGQ8lfPSuA7gCppvzCxMfez9D-AWG5tA4</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Wang, Yanting</creator><creator>Lan, Wenxian</creator><creator>Yan, Zhenzhen</creator><creator>Gao, Jing</creator><creator>Liu, Xinlian</creator><creator>Wang, Sheng</creator><creator>Guo, Xiying</creator><creator>Wang, Chunxi</creator><creator>Zhou, Hu</creator><creator>Ding, Jiuping</creator><creator>Cao, Chunyang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2509-6761</orcidid><orcidid>https://orcid.org/0000-0001-7006-4737</orcidid></search><sort><creationdate>20180315</creationdate><title>Solution structure of extracellular loop of human β4 subunit of BK channel and its biological implication on ChTX sensitivity</title><author>Wang, Yanting ; Lan, Wenxian ; Yan, Zhenzhen ; Gao, Jing ; Liu, Xinlian ; Wang, Sheng ; Guo, Xiying ; Wang, Chunxi ; Zhou, Hu ; Ding, Jiuping ; Cao, Chunyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-32a50d306dbf227703758488e50150d139f29c0ce853cf5cb2ac564ad757902c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/45/269/1151</topic><topic>631/535/878/1263</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium conductance</topic><topic>Channel gating</topic><topic>Charybdotoxin</topic><topic>Charybdotoxin - chemistry</topic><topic>Charybdotoxin - metabolism</topic><topic>Conduction</topic><topic>Cryoelectron Microscopy</topic><topic>Deactivation</topic><topic>Disulfide bonds</topic><topic>Disulfides - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - chemistry</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - genetics</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Potassium</topic><topic>Potassium channels (calcium-gated)</topic><topic>Potassium channels (voltage-gated)</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Titration</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanting</creatorcontrib><creatorcontrib>Lan, Wenxian</creatorcontrib><creatorcontrib>Yan, Zhenzhen</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Liu, Xinlian</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Guo, Xiying</creatorcontrib><creatorcontrib>Wang, Chunxi</creatorcontrib><creatorcontrib>Zhou, Hu</creatorcontrib><creatorcontrib>Ding, Jiuping</creatorcontrib><creatorcontrib>Cao, Chunyang</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanting</au><au>Lan, Wenxian</au><au>Yan, Zhenzhen</au><au>Gao, Jing</au><au>Liu, Xinlian</au><au>Wang, Sheng</au><au>Guo, Xiying</au><au>Wang, Chunxi</au><au>Zhou, Hu</au><au>Ding, Jiuping</au><au>Cao, Chunyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution structure of extracellular loop of human β4 subunit of BK channel and its biological implication on ChTX sensitivity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-03-15</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>4571</spage><epage>4571</epage><pages>4571-4571</pages><artnum>4571</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Large-conductance Ca 2+ - and voltage-dependent K + (BK) channels display diverse biological functions while their pore-forming α subunit is coded by a single Slo1 gene. The variety of BK channels is correlated with the effects of BKα coexpression with auxiliary β (β1-β4) subunits, as well as newly defined γ subunits. Charybdotoxin (ChTX) blocks BK channel through physically occluding the K + -conduction pore. Human brain enriched β4 subunit (hβ4) alters the conductance-voltage curve, slows activation and deactivation time courses of BK channels. Its extracellular loop (hβ4-loop) specifically impedes ChTX to bind BK channel pore. However, the structure of β4 subunit’s extracellular loop and the molecular mechanism for gating kinetics, toxin sensitivity of BK channels regulated by β4 are still unclear. To address them, here, we first identified four disulfide bonds in hβ4-loop by mass spectroscopy and NMR techniques. Then we determined its three-dimensional solution structure, performed NMR titration and electrophysiological analysis, and found that residue Asn123 of β4 subunit regulated the gating and pharmacological characteristics of BK channel. Finally, by constructing structure models of BKα/β4 and thermodynamic double-mutant cycle analysis, we proposed that BKα subunit might interact with β4 subunit through the conserved residue Glu264(BKα) coupling with residue Asn123(β4).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29545539</pmid><doi>10.1038/s41598-018-23016-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2509-6761</orcidid><orcidid>https://orcid.org/0000-0001-7006-4737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-03, Vol.8 (1), p.4571-4571, Article 4571
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5854672
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/269/1151
631/535/878/1263
Calcium channels (voltage-gated)
Calcium conductance
Channel gating
Charybdotoxin
Charybdotoxin - chemistry
Charybdotoxin - metabolism
Conduction
Cryoelectron Microscopy
Deactivation
Disulfide bonds
Disulfides - chemistry
Humanities and Social Sciences
Humans
Kinetics
Large-Conductance Calcium-Activated Potassium Channels - chemistry
Large-Conductance Calcium-Activated Potassium Channels - genetics
Large-Conductance Calcium-Activated Potassium Channels - metabolism
Mass Spectrometry
Mass spectroscopy
Models, Molecular
multidisciplinary
NMR
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Potassium
Potassium channels (calcium-gated)
Potassium channels (voltage-gated)
Protein Structure, Tertiary
Protein Subunits - chemistry
Protein Subunits - genetics
Protein Subunits - metabolism
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Recombinant Proteins - isolation & purification
Science
Science (multidisciplinary)
Titration
Toxins
title Solution structure of extracellular loop of human β4 subunit of BK channel and its biological implication on ChTX sensitivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20structure%20of%20extracellular%20loop%20of%20human%20%CE%B24%20subunit%20of%20BK%20channel%20and%20its%20biological%20implication%20on%20ChTX%20sensitivity&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Yanting&rft.date=2018-03-15&rft.volume=8&rft.issue=1&rft.spage=4571&rft.epage=4571&rft.pages=4571-4571&rft.artnum=4571&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-23016-y&rft_dat=%3Cproquest_pubme%3E2014352703%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-32a50d306dbf227703758488e50150d139f29c0ce853cf5cb2ac564ad757902c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014352703&rft_id=info:pmid/29545539&rfr_iscdi=true