Loading…

OCT4/POU5F1 is required for NANOG expression in bovine blastocysts

Mammalian preimplantation development involves two lineage specifications: first, the CDX2-expressing trophectoderm (TE) and a pluripotent inner cell mass (ICM) are separated during blastocyst formation. Second, the pluripotent epiblast (EPI; expressing NANOG) and the differentiated primitive endode...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2018-03, Vol.115 (11), p.2770-2775
Main Authors: Simmet, Kilian, Zakhartchenko, Valeri, Philippou-Massier, Julia, Blum, Helmut, Klymiuk, Nikolai, Wolf, Eckhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-c637f1d321a13c5c905bf7cf76906fe7da04634d7252790d9bbfb1ea3e317a263
cites cdi_FETCH-LOGICAL-c509t-c637f1d321a13c5c905bf7cf76906fe7da04634d7252790d9bbfb1ea3e317a263
container_end_page 2775
container_issue 11
container_start_page 2770
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Simmet, Kilian
Zakhartchenko, Valeri
Philippou-Massier, Julia
Blum, Helmut
Klymiuk, Nikolai
Wolf, Eckhard
description Mammalian preimplantation development involves two lineage specifications: first, the CDX2-expressing trophectoderm (TE) and a pluripotent inner cell mass (ICM) are separated during blastocyst formation. Second, the pluripotent epiblast (EPI; expressing NANOG) and the differentiated primitive endoderm (PrE; expressing GATA6) diverge within the ICM. Studies in mice revealed that OCT4/POU5F1 is at the center of a pluripotency regulatory network. To study the role of OCT4 in bovine preimplantation development, we generated OCT4 knockout (KO) fibroblasts by CRISPR-Cas9 and produced embryos by somatic cell nuclear transfer (SCNT). SCNT embryos from nontransfected fibroblasts and embryos produced by in vitro fertilization served as controls. In OCT4 KO morulae (day 5), ∼70% of the nuclei were OCT4 positive, indicating that maternal OCT4 mRNA partially maintains OCT4 protein expression during early development. In contrast, OCT4 KO blastocysts (day 7) lacked OCT4 protein entirely. CDX2 was detected only in TE cells; OCT4 is thus not required to suppress CDX2 in the ICM. Control blastocysts showed a typical salt-and-pepper distribution of NANOG- and GATA6-positive cells in the ICM. In contrast, NANOG was absent or very faint in the ICM of OCT4 KO blastocysts, and no cells expressing exclusively NANOG were observed. This mimics findings in OCT4-deficient human blastocysts but is in sharp contrast to Oct4-null mouse blastocysts, where NANOG persists and PrE development fails. Our study supports bovine embryogenesis as a model for early human development and exemplifies a general strategy for studying the roles of specific genes in embryos of domestic species.
doi_str_mv 10.1073/pnas.1718833115
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5856541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508332</jstor_id><sourcerecordid>26508332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c637f1d321a13c5c905bf7cf76906fe7da04634d7252790d9bbfb1ea3e317a263</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUiUsv6c742xeksmoLUtXl0J4tx3HAq2y8tZOK_vdktaUFTnN4v3l6M4-Q9winCIotd4Mrp6hQa8YQxQuyQDBYS27gJVkAUFVrTvkReVPKBgCM0PCaHFHDNaNCL8iX9eqGL7-vb8UFVrFUOdxNMYe26lKurs-u15dV-LXLoZSYhioOVZPu4xCqpndlTP6hjOUtedW5voR3j_OY3F6c36y-1lfry2-rs6vaCzBj7SVTHbaMokPmhTcgmk75TkkDsguqdcAl462igioDrWmarsHgWGCoHJXsmHw--O6mZhtaH4Yxu97ucty6_GCTi_ZfZYg_7Y90b4UWUnCcDU4eDXK6m0IZ7TYWH_reDSFNxVIArbXgoGf003_oJk15mM-bKWokQ8P21PJA-ZxKyaF7CoNg9_3YfT_2uZ954-PfNzzxfwqZgQ8HYDO_Nz_rUsypGGW_AdxXlDs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029631938</pqid></control><display><type>article</type><title>OCT4/POU5F1 is required for NANOG expression in bovine blastocysts</title><source>JSTOR-E-Journals</source><source>PubMed Central</source><creator>Simmet, Kilian ; Zakhartchenko, Valeri ; Philippou-Massier, Julia ; Blum, Helmut ; Klymiuk, Nikolai ; Wolf, Eckhard</creator><creatorcontrib>Simmet, Kilian ; Zakhartchenko, Valeri ; Philippou-Massier, Julia ; Blum, Helmut ; Klymiuk, Nikolai ; Wolf, Eckhard</creatorcontrib><description>Mammalian preimplantation development involves two lineage specifications: first, the CDX2-expressing trophectoderm (TE) and a pluripotent inner cell mass (ICM) are separated during blastocyst formation. Second, the pluripotent epiblast (EPI; expressing NANOG) and the differentiated primitive endoderm (PrE; expressing GATA6) diverge within the ICM. Studies in mice revealed that OCT4/POU5F1 is at the center of a pluripotency regulatory network. To study the role of OCT4 in bovine preimplantation development, we generated OCT4 knockout (KO) fibroblasts by CRISPR-Cas9 and produced embryos by somatic cell nuclear transfer (SCNT). SCNT embryos from nontransfected fibroblasts and embryos produced by in vitro fertilization served as controls. In OCT4 KO morulae (day 5), ∼70% of the nuclei were OCT4 positive, indicating that maternal OCT4 mRNA partially maintains OCT4 protein expression during early development. In contrast, OCT4 KO blastocysts (day 7) lacked OCT4 protein entirely. CDX2 was detected only in TE cells; OCT4 is thus not required to suppress CDX2 in the ICM. Control blastocysts showed a typical salt-and-pepper distribution of NANOG- and GATA6-positive cells in the ICM. In contrast, NANOG was absent or very faint in the ICM of OCT4 KO blastocysts, and no cells expressing exclusively NANOG were observed. This mimics findings in OCT4-deficient human blastocysts but is in sharp contrast to Oct4-null mouse blastocysts, where NANOG persists and PrE development fails. Our study supports bovine embryogenesis as a model for early human development and exemplifies a general strategy for studying the roles of specific genes in embryos of domestic species.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1718833115</identifier><identifier>PMID: 29483258</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Blastocysts ; CDX2 protein ; Cells ; CRISPR ; Embryogenesis ; Embryonic growth stage ; Embryos ; Endoderm ; Fibroblasts ; Gene expression ; Genes ; In vitro fertilization ; Mammals ; mRNA ; Nuclear transfer ; Nuclei ; Oct-4 protein ; Pluripotency ; Ribonucleic acid ; RNA ; Somatic cell nuclear transfer ; Trophectoderm</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (11), p.2770-2775</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 13, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c637f1d321a13c5c905bf7cf76906fe7da04634d7252790d9bbfb1ea3e317a263</citedby><cites>FETCH-LOGICAL-c509t-c637f1d321a13c5c905bf7cf76906fe7da04634d7252790d9bbfb1ea3e317a263</cites><orcidid>0000-0003-2188-3108 ; 0000-0002-0430-9510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508332$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508332$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29483258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simmet, Kilian</creatorcontrib><creatorcontrib>Zakhartchenko, Valeri</creatorcontrib><creatorcontrib>Philippou-Massier, Julia</creatorcontrib><creatorcontrib>Blum, Helmut</creatorcontrib><creatorcontrib>Klymiuk, Nikolai</creatorcontrib><creatorcontrib>Wolf, Eckhard</creatorcontrib><title>OCT4/POU5F1 is required for NANOG expression in bovine blastocysts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mammalian preimplantation development involves two lineage specifications: first, the CDX2-expressing trophectoderm (TE) and a pluripotent inner cell mass (ICM) are separated during blastocyst formation. Second, the pluripotent epiblast (EPI; expressing NANOG) and the differentiated primitive endoderm (PrE; expressing GATA6) diverge within the ICM. Studies in mice revealed that OCT4/POU5F1 is at the center of a pluripotency regulatory network. To study the role of OCT4 in bovine preimplantation development, we generated OCT4 knockout (KO) fibroblasts by CRISPR-Cas9 and produced embryos by somatic cell nuclear transfer (SCNT). SCNT embryos from nontransfected fibroblasts and embryos produced by in vitro fertilization served as controls. In OCT4 KO morulae (day 5), ∼70% of the nuclei were OCT4 positive, indicating that maternal OCT4 mRNA partially maintains OCT4 protein expression during early development. In contrast, OCT4 KO blastocysts (day 7) lacked OCT4 protein entirely. CDX2 was detected only in TE cells; OCT4 is thus not required to suppress CDX2 in the ICM. Control blastocysts showed a typical salt-and-pepper distribution of NANOG- and GATA6-positive cells in the ICM. In contrast, NANOG was absent or very faint in the ICM of OCT4 KO blastocysts, and no cells expressing exclusively NANOG were observed. This mimics findings in OCT4-deficient human blastocysts but is in sharp contrast to Oct4-null mouse blastocysts, where NANOG persists and PrE development fails. Our study supports bovine embryogenesis as a model for early human development and exemplifies a general strategy for studying the roles of specific genes in embryos of domestic species.</description><subject>Biological Sciences</subject><subject>Blastocysts</subject><subject>CDX2 protein</subject><subject>Cells</subject><subject>CRISPR</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Endoderm</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Genes</subject><subject>In vitro fertilization</subject><subject>Mammals</subject><subject>mRNA</subject><subject>Nuclear transfer</subject><subject>Nuclei</subject><subject>Oct-4 protein</subject><subject>Pluripotency</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Somatic cell nuclear transfer</subject><subject>Trophectoderm</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAkUiUsv6c742xeksmoLUtXl0J4tx3HAq2y8tZOK_vdktaUFTnN4v3l6M4-Q9winCIotd4Mrp6hQa8YQxQuyQDBYS27gJVkAUFVrTvkReVPKBgCM0PCaHFHDNaNCL8iX9eqGL7-vb8UFVrFUOdxNMYe26lKurs-u15dV-LXLoZSYhioOVZPu4xCqpndlTP6hjOUtedW5voR3j_OY3F6c36y-1lfry2-rs6vaCzBj7SVTHbaMokPmhTcgmk75TkkDsguqdcAl462igioDrWmarsHgWGCoHJXsmHw--O6mZhtaH4Yxu97ucty6_GCTi_ZfZYg_7Y90b4UWUnCcDU4eDXK6m0IZ7TYWH_reDSFNxVIArbXgoGf003_oJk15mM-bKWokQ8P21PJA-ZxKyaF7CoNg9_3YfT_2uZ954-PfNzzxfwqZgQ8HYDO_Nz_rUsypGGW_AdxXlDs</recordid><startdate>20180313</startdate><enddate>20180313</enddate><creator>Simmet, Kilian</creator><creator>Zakhartchenko, Valeri</creator><creator>Philippou-Massier, Julia</creator><creator>Blum, Helmut</creator><creator>Klymiuk, Nikolai</creator><creator>Wolf, Eckhard</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2188-3108</orcidid><orcidid>https://orcid.org/0000-0002-0430-9510</orcidid></search><sort><creationdate>20180313</creationdate><title>OCT4/POU5F1 is required for NANOG expression in bovine blastocysts</title><author>Simmet, Kilian ; Zakhartchenko, Valeri ; Philippou-Massier, Julia ; Blum, Helmut ; Klymiuk, Nikolai ; Wolf, Eckhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c637f1d321a13c5c905bf7cf76906fe7da04634d7252790d9bbfb1ea3e317a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological Sciences</topic><topic>Blastocysts</topic><topic>CDX2 protein</topic><topic>Cells</topic><topic>CRISPR</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Endoderm</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Genes</topic><topic>In vitro fertilization</topic><topic>Mammals</topic><topic>mRNA</topic><topic>Nuclear transfer</topic><topic>Nuclei</topic><topic>Oct-4 protein</topic><topic>Pluripotency</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Somatic cell nuclear transfer</topic><topic>Trophectoderm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmet, Kilian</creatorcontrib><creatorcontrib>Zakhartchenko, Valeri</creatorcontrib><creatorcontrib>Philippou-Massier, Julia</creatorcontrib><creatorcontrib>Blum, Helmut</creatorcontrib><creatorcontrib>Klymiuk, Nikolai</creatorcontrib><creatorcontrib>Wolf, Eckhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmet, Kilian</au><au>Zakhartchenko, Valeri</au><au>Philippou-Massier, Julia</au><au>Blum, Helmut</au><au>Klymiuk, Nikolai</au><au>Wolf, Eckhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OCT4/POU5F1 is required for NANOG expression in bovine blastocysts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-03-13</date><risdate>2018</risdate><volume>115</volume><issue>11</issue><spage>2770</spage><epage>2775</epage><pages>2770-2775</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mammalian preimplantation development involves two lineage specifications: first, the CDX2-expressing trophectoderm (TE) and a pluripotent inner cell mass (ICM) are separated during blastocyst formation. Second, the pluripotent epiblast (EPI; expressing NANOG) and the differentiated primitive endoderm (PrE; expressing GATA6) diverge within the ICM. Studies in mice revealed that OCT4/POU5F1 is at the center of a pluripotency regulatory network. To study the role of OCT4 in bovine preimplantation development, we generated OCT4 knockout (KO) fibroblasts by CRISPR-Cas9 and produced embryos by somatic cell nuclear transfer (SCNT). SCNT embryos from nontransfected fibroblasts and embryos produced by in vitro fertilization served as controls. In OCT4 KO morulae (day 5), ∼70% of the nuclei were OCT4 positive, indicating that maternal OCT4 mRNA partially maintains OCT4 protein expression during early development. In contrast, OCT4 KO blastocysts (day 7) lacked OCT4 protein entirely. CDX2 was detected only in TE cells; OCT4 is thus not required to suppress CDX2 in the ICM. Control blastocysts showed a typical salt-and-pepper distribution of NANOG- and GATA6-positive cells in the ICM. In contrast, NANOG was absent or very faint in the ICM of OCT4 KO blastocysts, and no cells expressing exclusively NANOG were observed. This mimics findings in OCT4-deficient human blastocysts but is in sharp contrast to Oct4-null mouse blastocysts, where NANOG persists and PrE development fails. Our study supports bovine embryogenesis as a model for early human development and exemplifies a general strategy for studying the roles of specific genes in embryos of domestic species.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29483258</pmid><doi>10.1073/pnas.1718833115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2188-3108</orcidid><orcidid>https://orcid.org/0000-0002-0430-9510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (11), p.2770-2775
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5856541
source JSTOR-E-Journals; PubMed Central
subjects Biological Sciences
Blastocysts
CDX2 protein
Cells
CRISPR
Embryogenesis
Embryonic growth stage
Embryos
Endoderm
Fibroblasts
Gene expression
Genes
In vitro fertilization
Mammals
mRNA
Nuclear transfer
Nuclei
Oct-4 protein
Pluripotency
Ribonucleic acid
RNA
Somatic cell nuclear transfer
Trophectoderm
title OCT4/POU5F1 is required for NANOG expression in bovine blastocysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OCT4/POU5F1%20is%20required%20for%20NANOG%20expression%20in%20bovine%20blastocysts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Simmet,%20Kilian&rft.date=2018-03-13&rft.volume=115&rft.issue=11&rft.spage=2770&rft.epage=2775&rft.pages=2770-2775&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1718833115&rft_dat=%3Cjstor_pubme%3E26508332%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-c637f1d321a13c5c905bf7cf76906fe7da04634d7252790d9bbfb1ea3e317a263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2029631938&rft_id=info:pmid/29483258&rft_jstor_id=26508332&rfr_iscdi=true