Loading…
Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation
Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors E...
Saved in:
Published in: | Scientific reports 2018-03, Vol.8 (1), p.5047-5047, Article 5047 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03 |
container_end_page | 5047 |
container_issue | 1 |
container_start_page | 5047 |
container_title | Scientific reports |
container_volume | 8 |
creator | Morano, Michela Ronchi, Giulia Nicolò, Valentina Fornasari, Benedetta Elena Crosio, Alessandro Perroteau, Isabelle Geuna, Stefano Gambarotta, Giovanna Raimondo, Stefania |
description | Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat
superficial digitorum flexor
muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed,
in vitro
experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role. |
doi_str_mv | 10.1038/s41598-018-23454-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5864756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018019926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03</originalsourceid><addsrcrecordid>eNp9kblOxDAQQC0EAgT8AAWyREMT8LlxGiRYcUkcDbRYTjJZAo4NdoLE3-MlsBwFbnzMm2ePB6FtSvYp4eogCioLlRGqMsaFFJlaQuuMCJm2jC3_WK-hrRgfSRqSFYIWq2iNFXKiCGXr6P7K14M1fesd9g3uHwBfwxBgNtjWYXpwEspjHN9iDx02TQ8Bxyew0BuLuyFWFnANDsLraDCuxgFatzjZRCuNsRG2PucNdHd6cjs9zy5vzi6mR5dZJSntMyMMoRUzQjWc5CBzqqpaQsNMM1Gc5VLkhpO6pEIUIChQYWQJBQHeiJyXhG-gw9H7PJQd1BW4Phirn0PbmfCmvWn174hrH_TMv2qpJiKXkyTY-xQE_zJA7HXXxgqsNQ78EDVLH01oUbA5uvsHffRDcKm8OZUTnidlothIVcHHGKBZPIYSPe-gHjuok1h_dFCrlLTzs4xFyle_EsBHIKaQm0H4vvsf7TsNnadf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017037647</pqid></control><display><type>article</type><title>Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Morano, Michela ; Ronchi, Giulia ; Nicolò, Valentina ; Fornasari, Benedetta Elena ; Crosio, Alessandro ; Perroteau, Isabelle ; Geuna, Stefano ; Gambarotta, Giovanna ; Raimondo, Stefania</creator><creatorcontrib>Morano, Michela ; Ronchi, Giulia ; Nicolò, Valentina ; Fornasari, Benedetta Elena ; Crosio, Alessandro ; Perroteau, Isabelle ; Geuna, Stefano ; Gambarotta, Giovanna ; Raimondo, Stefania</creatorcontrib><description>Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat
superficial digitorum flexor
muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed,
in vitro
experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-23454-8</identifier><identifier>PMID: 29568012</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 45/90 ; 631/378/1687 ; 631/80 ; 692/698/1671/1668/1973 ; 82/29 ; 82/80 ; 96/63 ; Animals ; Cell survival ; Cell Survival - genetics ; Denervation ; Denervation - methods ; ErbB protein ; ErbB-1 protein ; ErbB-2 protein ; ErbB-3 protein ; Gene expression ; Gene Expression Regulation ; Homeostasis ; Humanities and Social Sciences ; Humans ; Isoforms ; Kinases ; Median nerve ; multidisciplinary ; Muscle, Skeletal - injuries ; Muscle, Skeletal - innervation ; Muscle, Skeletal - metabolism ; Muscular Atrophy - genetics ; Muscular Atrophy - metabolism ; Muscular Atrophy - pathology ; Musculoskeletal system ; Myotubes ; Nervous tissues ; Neuregulin ; Neuregulin 1 ; Neuregulin-1 - genetics ; Neuromuscular Junction - genetics ; Peripheral nerves ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein-tyrosine kinase ; Rats ; Receptor, ErbB-2 - genetics ; Receptors, Cholinergic - genetics ; Reinnervation ; Satellite Cells, Skeletal Muscle - metabolism ; Satellite Cells, Skeletal Muscle - pathology ; Science ; Science (multidisciplinary) ; Signal transduction ; Skeletal muscle</subject><ispartof>Scientific reports, 2018-03, Vol.8 (1), p.5047-5047, Article 5047</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03</citedby><cites>FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03</cites><orcidid>0000-0001-9901-8654 ; 0000-0002-8380-5925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2017037647/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2017037647?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29568012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morano, Michela</creatorcontrib><creatorcontrib>Ronchi, Giulia</creatorcontrib><creatorcontrib>Nicolò, Valentina</creatorcontrib><creatorcontrib>Fornasari, Benedetta Elena</creatorcontrib><creatorcontrib>Crosio, Alessandro</creatorcontrib><creatorcontrib>Perroteau, Isabelle</creatorcontrib><creatorcontrib>Geuna, Stefano</creatorcontrib><creatorcontrib>Gambarotta, Giovanna</creatorcontrib><creatorcontrib>Raimondo, Stefania</creatorcontrib><title>Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat
superficial digitorum flexor
muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed,
in vitro
experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.</description><subject>13/51</subject><subject>14/19</subject><subject>45/90</subject><subject>631/378/1687</subject><subject>631/80</subject><subject>692/698/1671/1668/1973</subject><subject>82/29</subject><subject>82/80</subject><subject>96/63</subject><subject>Animals</subject><subject>Cell survival</subject><subject>Cell Survival - genetics</subject><subject>Denervation</subject><subject>Denervation - methods</subject><subject>ErbB protein</subject><subject>ErbB-1 protein</subject><subject>ErbB-2 protein</subject><subject>ErbB-3 protein</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Kinases</subject><subject>Median nerve</subject><subject>multidisciplinary</subject><subject>Muscle, Skeletal - injuries</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular Atrophy - genetics</subject><subject>Muscular Atrophy - metabolism</subject><subject>Muscular Atrophy - pathology</subject><subject>Musculoskeletal system</subject><subject>Myotubes</subject><subject>Nervous tissues</subject><subject>Neuregulin</subject><subject>Neuregulin 1</subject><subject>Neuregulin-1 - genetics</subject><subject>Neuromuscular Junction - genetics</subject><subject>Peripheral nerves</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein-tyrosine kinase</subject><subject>Rats</subject><subject>Receptor, ErbB-2 - genetics</subject><subject>Receptors, Cholinergic - genetics</subject><subject>Reinnervation</subject><subject>Satellite Cells, Skeletal Muscle - metabolism</subject><subject>Satellite Cells, Skeletal Muscle - pathology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kblOxDAQQC0EAgT8AAWyREMT8LlxGiRYcUkcDbRYTjJZAo4NdoLE3-MlsBwFbnzMm2ePB6FtSvYp4eogCioLlRGqMsaFFJlaQuuMCJm2jC3_WK-hrRgfSRqSFYIWq2iNFXKiCGXr6P7K14M1fesd9g3uHwBfwxBgNtjWYXpwEspjHN9iDx02TQ8Bxyew0BuLuyFWFnANDsLraDCuxgFatzjZRCuNsRG2PucNdHd6cjs9zy5vzi6mR5dZJSntMyMMoRUzQjWc5CBzqqpaQsNMM1Gc5VLkhpO6pEIUIChQYWQJBQHeiJyXhG-gw9H7PJQd1BW4Phirn0PbmfCmvWn174hrH_TMv2qpJiKXkyTY-xQE_zJA7HXXxgqsNQ78EDVLH01oUbA5uvsHffRDcKm8OZUTnidlothIVcHHGKBZPIYSPe-gHjuok1h_dFCrlLTzs4xFyle_EsBHIKaQm0H4vvsf7TsNnadf</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Morano, Michela</creator><creator>Ronchi, Giulia</creator><creator>Nicolò, Valentina</creator><creator>Fornasari, Benedetta Elena</creator><creator>Crosio, Alessandro</creator><creator>Perroteau, Isabelle</creator><creator>Geuna, Stefano</creator><creator>Gambarotta, Giovanna</creator><creator>Raimondo, Stefania</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9901-8654</orcidid><orcidid>https://orcid.org/0000-0002-8380-5925</orcidid></search><sort><creationdate>20180322</creationdate><title>Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation</title><author>Morano, Michela ; Ronchi, Giulia ; Nicolò, Valentina ; Fornasari, Benedetta Elena ; Crosio, Alessandro ; Perroteau, Isabelle ; Geuna, Stefano ; Gambarotta, Giovanna ; Raimondo, Stefania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/51</topic><topic>14/19</topic><topic>45/90</topic><topic>631/378/1687</topic><topic>631/80</topic><topic>692/698/1671/1668/1973</topic><topic>82/29</topic><topic>82/80</topic><topic>96/63</topic><topic>Animals</topic><topic>Cell survival</topic><topic>Cell Survival - genetics</topic><topic>Denervation</topic><topic>Denervation - methods</topic><topic>ErbB protein</topic><topic>ErbB-1 protein</topic><topic>ErbB-2 protein</topic><topic>ErbB-3 protein</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Kinases</topic><topic>Median nerve</topic><topic>multidisciplinary</topic><topic>Muscle, Skeletal - injuries</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular Atrophy - genetics</topic><topic>Muscular Atrophy - metabolism</topic><topic>Muscular Atrophy - pathology</topic><topic>Musculoskeletal system</topic><topic>Myotubes</topic><topic>Nervous tissues</topic><topic>Neuregulin</topic><topic>Neuregulin 1</topic><topic>Neuregulin-1 - genetics</topic><topic>Neuromuscular Junction - genetics</topic><topic>Peripheral nerves</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein-tyrosine kinase</topic><topic>Rats</topic><topic>Receptor, ErbB-2 - genetics</topic><topic>Receptors, Cholinergic - genetics</topic><topic>Reinnervation</topic><topic>Satellite Cells, Skeletal Muscle - metabolism</topic><topic>Satellite Cells, Skeletal Muscle - pathology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morano, Michela</creatorcontrib><creatorcontrib>Ronchi, Giulia</creatorcontrib><creatorcontrib>Nicolò, Valentina</creatorcontrib><creatorcontrib>Fornasari, Benedetta Elena</creatorcontrib><creatorcontrib>Crosio, Alessandro</creatorcontrib><creatorcontrib>Perroteau, Isabelle</creatorcontrib><creatorcontrib>Geuna, Stefano</creatorcontrib><creatorcontrib>Gambarotta, Giovanna</creatorcontrib><creatorcontrib>Raimondo, Stefania</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morano, Michela</au><au>Ronchi, Giulia</au><au>Nicolò, Valentina</au><au>Fornasari, Benedetta Elena</au><au>Crosio, Alessandro</au><au>Perroteau, Isabelle</au><au>Geuna, Stefano</au><au>Gambarotta, Giovanna</au><au>Raimondo, Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-03-22</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>5047</spage><epage>5047</epage><pages>5047-5047</pages><artnum>5047</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat
superficial digitorum flexor
muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed,
in vitro
experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29568012</pmid><doi>10.1038/s41598-018-23454-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9901-8654</orcidid><orcidid>https://orcid.org/0000-0002-8380-5925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-03, Vol.8 (1), p.5047-5047, Article 5047 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5864756 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/51 14/19 45/90 631/378/1687 631/80 692/698/1671/1668/1973 82/29 82/80 96/63 Animals Cell survival Cell Survival - genetics Denervation Denervation - methods ErbB protein ErbB-1 protein ErbB-2 protein ErbB-3 protein Gene expression Gene Expression Regulation Homeostasis Humanities and Social Sciences Humans Isoforms Kinases Median nerve multidisciplinary Muscle, Skeletal - injuries Muscle, Skeletal - innervation Muscle, Skeletal - metabolism Muscular Atrophy - genetics Muscular Atrophy - metabolism Muscular Atrophy - pathology Musculoskeletal system Myotubes Nervous tissues Neuregulin Neuregulin 1 Neuregulin-1 - genetics Neuromuscular Junction - genetics Peripheral nerves Protein Isoforms - genetics Protein Isoforms - metabolism Protein-tyrosine kinase Rats Receptor, ErbB-2 - genetics Receptors, Cholinergic - genetics Reinnervation Satellite Cells, Skeletal Muscle - metabolism Satellite Cells, Skeletal Muscle - pathology Science Science (multidisciplinary) Signal transduction Skeletal muscle |
title | Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20Neuregulin%201/ErbB%20system%20after%20skeletal%20muscle%20denervation%20and%20reinnervation&rft.jtitle=Scientific%20reports&rft.au=Morano,%20Michela&rft.date=2018-03-22&rft.volume=8&rft.issue=1&rft.spage=5047&rft.epage=5047&rft.pages=5047-5047&rft.artnum=5047&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-23454-8&rft_dat=%3Cproquest_pubme%3E2018019926%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017037647&rft_id=info:pmid/29568012&rfr_iscdi=true |