Loading…

Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation

Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors E...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-03, Vol.8 (1), p.5047-5047, Article 5047
Main Authors: Morano, Michela, Ronchi, Giulia, Nicolò, Valentina, Fornasari, Benedetta Elena, Crosio, Alessandro, Perroteau, Isabelle, Geuna, Stefano, Gambarotta, Giovanna, Raimondo, Stefania
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03
cites cdi_FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03
container_end_page 5047
container_issue 1
container_start_page 5047
container_title Scientific reports
container_volume 8
creator Morano, Michela
Ronchi, Giulia
Nicolò, Valentina
Fornasari, Benedetta Elena
Crosio, Alessandro
Perroteau, Isabelle
Geuna, Stefano
Gambarotta, Giovanna
Raimondo, Stefania
description Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat superficial digitorum flexor muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed, in vitro experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.
doi_str_mv 10.1038/s41598-018-23454-8
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5864756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018019926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03</originalsourceid><addsrcrecordid>eNp9kblOxDAQQC0EAgT8AAWyREMT8LlxGiRYcUkcDbRYTjJZAo4NdoLE3-MlsBwFbnzMm2ePB6FtSvYp4eogCioLlRGqMsaFFJlaQuuMCJm2jC3_WK-hrRgfSRqSFYIWq2iNFXKiCGXr6P7K14M1fesd9g3uHwBfwxBgNtjWYXpwEspjHN9iDx02TQ8Bxyew0BuLuyFWFnANDsLraDCuxgFatzjZRCuNsRG2PucNdHd6cjs9zy5vzi6mR5dZJSntMyMMoRUzQjWc5CBzqqpaQsNMM1Gc5VLkhpO6pEIUIChQYWQJBQHeiJyXhG-gw9H7PJQd1BW4Phirn0PbmfCmvWn174hrH_TMv2qpJiKXkyTY-xQE_zJA7HXXxgqsNQ78EDVLH01oUbA5uvsHffRDcKm8OZUTnidlothIVcHHGKBZPIYSPe-gHjuok1h_dFCrlLTzs4xFyle_EsBHIKaQm0H4vvsf7TsNnadf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017037647</pqid></control><display><type>article</type><title>Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Morano, Michela ; Ronchi, Giulia ; Nicolò, Valentina ; Fornasari, Benedetta Elena ; Crosio, Alessandro ; Perroteau, Isabelle ; Geuna, Stefano ; Gambarotta, Giovanna ; Raimondo, Stefania</creator><creatorcontrib>Morano, Michela ; Ronchi, Giulia ; Nicolò, Valentina ; Fornasari, Benedetta Elena ; Crosio, Alessandro ; Perroteau, Isabelle ; Geuna, Stefano ; Gambarotta, Giovanna ; Raimondo, Stefania</creatorcontrib><description>Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat superficial digitorum flexor muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed, in vitro experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-23454-8</identifier><identifier>PMID: 29568012</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 45/90 ; 631/378/1687 ; 631/80 ; 692/698/1671/1668/1973 ; 82/29 ; 82/80 ; 96/63 ; Animals ; Cell survival ; Cell Survival - genetics ; Denervation ; Denervation - methods ; ErbB protein ; ErbB-1 protein ; ErbB-2 protein ; ErbB-3 protein ; Gene expression ; Gene Expression Regulation ; Homeostasis ; Humanities and Social Sciences ; Humans ; Isoforms ; Kinases ; Median nerve ; multidisciplinary ; Muscle, Skeletal - injuries ; Muscle, Skeletal - innervation ; Muscle, Skeletal - metabolism ; Muscular Atrophy - genetics ; Muscular Atrophy - metabolism ; Muscular Atrophy - pathology ; Musculoskeletal system ; Myotubes ; Nervous tissues ; Neuregulin ; Neuregulin 1 ; Neuregulin-1 - genetics ; Neuromuscular Junction - genetics ; Peripheral nerves ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein-tyrosine kinase ; Rats ; Receptor, ErbB-2 - genetics ; Receptors, Cholinergic - genetics ; Reinnervation ; Satellite Cells, Skeletal Muscle - metabolism ; Satellite Cells, Skeletal Muscle - pathology ; Science ; Science (multidisciplinary) ; Signal transduction ; Skeletal muscle</subject><ispartof>Scientific reports, 2018-03, Vol.8 (1), p.5047-5047, Article 5047</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03</citedby><cites>FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03</cites><orcidid>0000-0001-9901-8654 ; 0000-0002-8380-5925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2017037647/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2017037647?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29568012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morano, Michela</creatorcontrib><creatorcontrib>Ronchi, Giulia</creatorcontrib><creatorcontrib>Nicolò, Valentina</creatorcontrib><creatorcontrib>Fornasari, Benedetta Elena</creatorcontrib><creatorcontrib>Crosio, Alessandro</creatorcontrib><creatorcontrib>Perroteau, Isabelle</creatorcontrib><creatorcontrib>Geuna, Stefano</creatorcontrib><creatorcontrib>Gambarotta, Giovanna</creatorcontrib><creatorcontrib>Raimondo, Stefania</creatorcontrib><title>Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat superficial digitorum flexor muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed, in vitro experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.</description><subject>13/51</subject><subject>14/19</subject><subject>45/90</subject><subject>631/378/1687</subject><subject>631/80</subject><subject>692/698/1671/1668/1973</subject><subject>82/29</subject><subject>82/80</subject><subject>96/63</subject><subject>Animals</subject><subject>Cell survival</subject><subject>Cell Survival - genetics</subject><subject>Denervation</subject><subject>Denervation - methods</subject><subject>ErbB protein</subject><subject>ErbB-1 protein</subject><subject>ErbB-2 protein</subject><subject>ErbB-3 protein</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Kinases</subject><subject>Median nerve</subject><subject>multidisciplinary</subject><subject>Muscle, Skeletal - injuries</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular Atrophy - genetics</subject><subject>Muscular Atrophy - metabolism</subject><subject>Muscular Atrophy - pathology</subject><subject>Musculoskeletal system</subject><subject>Myotubes</subject><subject>Nervous tissues</subject><subject>Neuregulin</subject><subject>Neuregulin 1</subject><subject>Neuregulin-1 - genetics</subject><subject>Neuromuscular Junction - genetics</subject><subject>Peripheral nerves</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein-tyrosine kinase</subject><subject>Rats</subject><subject>Receptor, ErbB-2 - genetics</subject><subject>Receptors, Cholinergic - genetics</subject><subject>Reinnervation</subject><subject>Satellite Cells, Skeletal Muscle - metabolism</subject><subject>Satellite Cells, Skeletal Muscle - pathology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kblOxDAQQC0EAgT8AAWyREMT8LlxGiRYcUkcDbRYTjJZAo4NdoLE3-MlsBwFbnzMm2ePB6FtSvYp4eogCioLlRGqMsaFFJlaQuuMCJm2jC3_WK-hrRgfSRqSFYIWq2iNFXKiCGXr6P7K14M1fesd9g3uHwBfwxBgNtjWYXpwEspjHN9iDx02TQ8Bxyew0BuLuyFWFnANDsLraDCuxgFatzjZRCuNsRG2PucNdHd6cjs9zy5vzi6mR5dZJSntMyMMoRUzQjWc5CBzqqpaQsNMM1Gc5VLkhpO6pEIUIChQYWQJBQHeiJyXhG-gw9H7PJQd1BW4Phirn0PbmfCmvWn174hrH_TMv2qpJiKXkyTY-xQE_zJA7HXXxgqsNQ78EDVLH01oUbA5uvsHffRDcKm8OZUTnidlothIVcHHGKBZPIYSPe-gHjuok1h_dFCrlLTzs4xFyle_EsBHIKaQm0H4vvsf7TsNnadf</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Morano, Michela</creator><creator>Ronchi, Giulia</creator><creator>Nicolò, Valentina</creator><creator>Fornasari, Benedetta Elena</creator><creator>Crosio, Alessandro</creator><creator>Perroteau, Isabelle</creator><creator>Geuna, Stefano</creator><creator>Gambarotta, Giovanna</creator><creator>Raimondo, Stefania</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9901-8654</orcidid><orcidid>https://orcid.org/0000-0002-8380-5925</orcidid></search><sort><creationdate>20180322</creationdate><title>Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation</title><author>Morano, Michela ; Ronchi, Giulia ; Nicolò, Valentina ; Fornasari, Benedetta Elena ; Crosio, Alessandro ; Perroteau, Isabelle ; Geuna, Stefano ; Gambarotta, Giovanna ; Raimondo, Stefania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/51</topic><topic>14/19</topic><topic>45/90</topic><topic>631/378/1687</topic><topic>631/80</topic><topic>692/698/1671/1668/1973</topic><topic>82/29</topic><topic>82/80</topic><topic>96/63</topic><topic>Animals</topic><topic>Cell survival</topic><topic>Cell Survival - genetics</topic><topic>Denervation</topic><topic>Denervation - methods</topic><topic>ErbB protein</topic><topic>ErbB-1 protein</topic><topic>ErbB-2 protein</topic><topic>ErbB-3 protein</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Kinases</topic><topic>Median nerve</topic><topic>multidisciplinary</topic><topic>Muscle, Skeletal - injuries</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular Atrophy - genetics</topic><topic>Muscular Atrophy - metabolism</topic><topic>Muscular Atrophy - pathology</topic><topic>Musculoskeletal system</topic><topic>Myotubes</topic><topic>Nervous tissues</topic><topic>Neuregulin</topic><topic>Neuregulin 1</topic><topic>Neuregulin-1 - genetics</topic><topic>Neuromuscular Junction - genetics</topic><topic>Peripheral nerves</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein-tyrosine kinase</topic><topic>Rats</topic><topic>Receptor, ErbB-2 - genetics</topic><topic>Receptors, Cholinergic - genetics</topic><topic>Reinnervation</topic><topic>Satellite Cells, Skeletal Muscle - metabolism</topic><topic>Satellite Cells, Skeletal Muscle - pathology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morano, Michela</creatorcontrib><creatorcontrib>Ronchi, Giulia</creatorcontrib><creatorcontrib>Nicolò, Valentina</creatorcontrib><creatorcontrib>Fornasari, Benedetta Elena</creatorcontrib><creatorcontrib>Crosio, Alessandro</creatorcontrib><creatorcontrib>Perroteau, Isabelle</creatorcontrib><creatorcontrib>Geuna, Stefano</creatorcontrib><creatorcontrib>Gambarotta, Giovanna</creatorcontrib><creatorcontrib>Raimondo, Stefania</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morano, Michela</au><au>Ronchi, Giulia</au><au>Nicolò, Valentina</au><au>Fornasari, Benedetta Elena</au><au>Crosio, Alessandro</au><au>Perroteau, Isabelle</au><au>Geuna, Stefano</au><au>Gambarotta, Giovanna</au><au>Raimondo, Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-03-22</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>5047</spage><epage>5047</epage><pages>5047-5047</pages><artnum>5047</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat superficial digitorum flexor muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed, in vitro experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29568012</pmid><doi>10.1038/s41598-018-23454-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9901-8654</orcidid><orcidid>https://orcid.org/0000-0002-8380-5925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-03, Vol.8 (1), p.5047-5047, Article 5047
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5864756
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/51
14/19
45/90
631/378/1687
631/80
692/698/1671/1668/1973
82/29
82/80
96/63
Animals
Cell survival
Cell Survival - genetics
Denervation
Denervation - methods
ErbB protein
ErbB-1 protein
ErbB-2 protein
ErbB-3 protein
Gene expression
Gene Expression Regulation
Homeostasis
Humanities and Social Sciences
Humans
Isoforms
Kinases
Median nerve
multidisciplinary
Muscle, Skeletal - injuries
Muscle, Skeletal - innervation
Muscle, Skeletal - metabolism
Muscular Atrophy - genetics
Muscular Atrophy - metabolism
Muscular Atrophy - pathology
Musculoskeletal system
Myotubes
Nervous tissues
Neuregulin
Neuregulin 1
Neuregulin-1 - genetics
Neuromuscular Junction - genetics
Peripheral nerves
Protein Isoforms - genetics
Protein Isoforms - metabolism
Protein-tyrosine kinase
Rats
Receptor, ErbB-2 - genetics
Receptors, Cholinergic - genetics
Reinnervation
Satellite Cells, Skeletal Muscle - metabolism
Satellite Cells, Skeletal Muscle - pathology
Science
Science (multidisciplinary)
Signal transduction
Skeletal muscle
title Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20Neuregulin%201/ErbB%20system%20after%20skeletal%20muscle%20denervation%20and%20reinnervation&rft.jtitle=Scientific%20reports&rft.au=Morano,%20Michela&rft.date=2018-03-22&rft.volume=8&rft.issue=1&rft.spage=5047&rft.epage=5047&rft.pages=5047-5047&rft.artnum=5047&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-23454-8&rft_dat=%3Cproquest_pubme%3E2018019926%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-a4a01c2a48f307e5718cd5ef2af68327547a30db1449e41e14a5be90e3f473b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017037647&rft_id=info:pmid/29568012&rfr_iscdi=true