Loading…

Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State

We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT). − Our construction employs the optimized-effective potential (OEP)...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2018-03, Vol.5 (3), p.992-1005
Main Authors: Flick, Johannes, Schäfer, Christian, Ruggenthaler, Michael, Appel, Heiko, Rubio, Angel
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a515t-be891b83d93a3b73973009b5092851b226b51ddb7e4530e2b5802878ce87e3693
cites cdi_FETCH-LOGICAL-a515t-be891b83d93a3b73973009b5092851b226b51ddb7e4530e2b5802878ce87e3693
container_end_page 1005
container_issue 3
container_start_page 992
container_title ACS photonics
container_volume 5
creator Flick, Johannes
Schäfer, Christian
Ruggenthaler, Michael
Appel, Heiko
Rubio, Angel
description We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT). − Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities.
doi_str_mv 10.1021/acsphotonics.7b01279
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5865078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019807615</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-be891b83d93a3b73973009b5092851b226b51ddb7e4530e2b5802878ce87e3693</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxVcIRKvSb4CQj1xSxvZ61-aAVEWlVCpqxZ-zZXtniauNHWxvpHLli2OatAoXTrY87_1mxq9pXlM4o8DoO-PyZhVLDN7ls94CZb161hwzzmHRAmPPD-5HzWnOdwBAQfCua182R0wJ1VIpjpvf55ZcBV98JDeb4tf-Fw7kYhzRFb9FchsLhuLNlMkYE_mCZiKf44RunjATHx5Mrj4uzbZCML8ntw9zkWUMJXk7V3LIpERSVvhoNYlcpjiHgXwtpuCr5sVYO-Dp_jxpvn-8-Lb8tLi-ubxanl8vjKCiLCxKRa3kg-KG256rngMoK0AxKahlrLOCDoPtsRUckFkhgcleOpQ98k7xk-bDjruZ7RoHVzdLZtKb5Ncm3etovP63EvxK_4hbLWQnoJcV8HYPSPHnjLnotc8Op8kEjHPWDKiS0HdUVGm7k7oUc044PrWhoP9GqA8j1PsIq-3N4YhPpsfAqgB2gmrXd3FOof7Y_5l_AIgqre4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019807615</pqid></control><display><type>article</type><title>Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Flick, Johannes ; Schäfer, Christian ; Ruggenthaler, Michael ; Appel, Heiko ; Rubio, Angel</creator><creatorcontrib>Flick, Johannes ; Schäfer, Christian ; Ruggenthaler, Michael ; Appel, Heiko ; Rubio, Angel</creatorcontrib><description>We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT). − Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.7b01279</identifier><identifier>PMID: 29594185</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS photonics, 2018-03, Vol.5 (3), p.992-1005</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-be891b83d93a3b73973009b5092851b226b51ddb7e4530e2b5802878ce87e3693</citedby><cites>FETCH-LOGICAL-a515t-be891b83d93a3b73973009b5092851b226b51ddb7e4530e2b5802878ce87e3693</cites><orcidid>0000-0003-0273-7797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29594185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flick, Johannes</creatorcontrib><creatorcontrib>Schäfer, Christian</creatorcontrib><creatorcontrib>Ruggenthaler, Michael</creatorcontrib><creatorcontrib>Appel, Heiko</creatorcontrib><creatorcontrib>Rubio, Angel</creatorcontrib><title>Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT). − Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vEzEQxVcIRKvSb4CQj1xSxvZ61-aAVEWlVCpqxZ-zZXtniauNHWxvpHLli2OatAoXTrY87_1mxq9pXlM4o8DoO-PyZhVLDN7ls94CZb161hwzzmHRAmPPD-5HzWnOdwBAQfCua182R0wJ1VIpjpvf55ZcBV98JDeb4tf-Fw7kYhzRFb9FchsLhuLNlMkYE_mCZiKf44RunjATHx5Mrj4uzbZCML8ntw9zkWUMJXk7V3LIpERSVvhoNYlcpjiHgXwtpuCr5sVYO-Dp_jxpvn-8-Lb8tLi-ubxanl8vjKCiLCxKRa3kg-KG256rngMoK0AxKahlrLOCDoPtsRUckFkhgcleOpQ98k7xk-bDjruZ7RoHVzdLZtKb5Ncm3etovP63EvxK_4hbLWQnoJcV8HYPSPHnjLnotc8Op8kEjHPWDKiS0HdUVGm7k7oUc044PrWhoP9GqA8j1PsIq-3N4YhPpsfAqgB2gmrXd3FOof7Y_5l_AIgqre4</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Flick, Johannes</creator><creator>Schäfer, Christian</creator><creator>Ruggenthaler, Michael</creator><creator>Appel, Heiko</creator><creator>Rubio, Angel</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0273-7797</orcidid></search><sort><creationdate>20180321</creationdate><title>Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State</title><author>Flick, Johannes ; Schäfer, Christian ; Ruggenthaler, Michael ; Appel, Heiko ; Rubio, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-be891b83d93a3b73973009b5092851b226b51ddb7e4530e2b5802878ce87e3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Flick, Johannes</creatorcontrib><creatorcontrib>Schäfer, Christian</creatorcontrib><creatorcontrib>Ruggenthaler, Michael</creatorcontrib><creatorcontrib>Appel, Heiko</creatorcontrib><creatorcontrib>Rubio, Angel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flick, Johannes</au><au>Schäfer, Christian</au><au>Ruggenthaler, Michael</au><au>Appel, Heiko</au><au>Rubio, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>5</volume><issue>3</issue><spage>992</spage><epage>1005</epage><pages>992-1005</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT). − Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29594185</pmid><doi>10.1021/acsphotonics.7b01279</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0273-7797</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2018-03, Vol.5 (3), p.992-1005
issn 2330-4022
2330-4022
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5865078
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20Initio%20Optimized%20Effective%20Potentials%20for%20Real%20Molecules%20in%20Optical%20Cavities:%20Photon%20Contributions%20to%20the%20Molecular%20Ground%20State&rft.jtitle=ACS%20photonics&rft.au=Flick,%20Johannes&rft.date=2018-03-21&rft.volume=5&rft.issue=3&rft.spage=992&rft.epage=1005&rft.pages=992-1005&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.7b01279&rft_dat=%3Cproquest_pubme%3E2019807615%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515t-be891b83d93a3b73973009b5092851b226b51ddb7e4530e2b5802878ce87e3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019807615&rft_id=info:pmid/29594185&rfr_iscdi=true