Loading…

Bullseye's representation of cerebral white matter hyperintensities

Visual rating scales have limited capacities to depict the regional distribution of cerebral white matter hyperintensities (WMH). We present a regional-zonal volumetric analysis alongside a visualization tool to compare and deconstruct visual rating scales. 3D T1-weighted, T2-weighted spin-echo and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroradiology 2018-03, Vol.45 (2), p.114-122
Main Authors: Sudre, C.H., Gomez Anson, B., Davagnanam, I., Schmitt, A., Mendelson, A.F., Prados, F., Smith, L., Atkinson, D., Hughes, A.D., Chaturvedi, N., Cardoso, M.J., Barkhof, F., Jaeger, H.R., Ourselin, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Visual rating scales have limited capacities to depict the regional distribution of cerebral white matter hyperintensities (WMH). We present a regional-zonal volumetric analysis alongside a visualization tool to compare and deconstruct visual rating scales. 3D T1-weighted, T2-weighted spin-echo and FLAIR images were acquired on a 3T system, from 82 elderly participants in a population-based study. Images were automatically segmented for WMH. Lobar boundaries and distance to ventricular surface were used to define white matter regions. Regional-zonal WMH loads were displayed using bullseye plots. Four raters assessed all images applying three scales. Correlations between visual scales and regional WMH as well as inter and intra-rater variability were assessed. A multinomial ordinal regression model was used to predict scores based on regional volumes and global WMH burdens. On average, the bullseye plot depicted a right-left symmetry in the distribution and concentration of damage in the periventricular zone, especially in frontal regions. WMH loads correlated well with the average visual rating scores (e.g. Kendall's tau [Volume, Scheltens]=0.59 CI=[0.53 0.62]). Local correlations allowed comparison of loading patterns between scales and between raters. Regional measurements had more predictive power than global WMH burden (e.g. frontal caps prediction with local features: ICC=0.67 CI=[0.53 0.77], global volume=0.50 CI=[0.32 0.65], intra-rater=0.44 CI=[0.23 0.60]). Regional-zonal representation of WMH burden highlights similarities and differences between visual rating scales and raters. The bullseye infographic tool provides a simple visual representation of regional lesion load that can be used for rater calibration and training.
ISSN:0150-9861
DOI:10.1016/j.neurad.2017.10.001