Loading…

Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo

Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. U...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2018-03, Vol.97 (6), p.1244-1252.e5
Main Authors: González-Rueda, Ana, Pedrosa, Victor, Feord, Rachael C., Clopath, Claudia, Paulsen, Ole
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3
cites cdi_FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3
container_end_page 1252.e5
container_issue 6
container_start_page 1244
container_title Neuron (Cambridge, Mass.)
container_volume 97
creator González-Rueda, Ana
Pedrosa, Victor
Feord, Rachael C.
Clopath, Claudia
Paulsen, Ole
description Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement. [Display omitted] •Conventional STDP is seen only during Down states in vivo•During Up states synaptic activation of L4 inputs leads to synaptic depression•Postsynaptic spikes protect against Up state-mediated synaptic weakening•These new plasticity rules improve S/N ratio and preserve stored information González-Rueda et al. show that presynaptic activation during slow-wave-sleep-like activity in vivo causes synaptic depression, unless it contributes to postsynaptic spiking. This plasticity rule offers an attractive mechanism for circuit refinement that improves signal-to-noise ratio and preserves previously stored information.
doi_str_mv 10.1016/j.neuron.2018.01.047
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5873548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318300722</els_id><sourcerecordid>2017218187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotOBN0AoEhs2CXZsx8kGqWr5qVSJxfCztBz7puPBYwc7STVvw7P0yUg0bflZsPLifudcn3sQekFwQTCp3uwKD2MMvigxqQtMCszEI7QiuBE5I03zGK1w3VR5VQp6gk5T2mFMGG_IU3RSNhxTUrMVcmd6sJMdDvkF9OAN-CG7CDc-aeWsv85Cl23GdthGSNvgTLY5eNUPVmeXvh-HlJkxLtjGhZv8m5og3ziAPnf2O2T31jN7-_OrncIz9KRTLsHzu3eNvrx_9_n8Y3716cPl-dlVrjkXQ65boxnmuGQlM1x0LTMV45hhYB1pVa0rqmjVkEZTrYgQFPNO0DmrKBvT8Zau0dujbz-2ezB6DhWVk320exUPMigr_554u5XXYZK8FpSzejZ4fWcQw48R0iD3NmlwTnkIY5LzyXFNG1ov6Kt_0F0Yo5_jLZQoSU1m0zViR0rHkFKE7uEzBMulTrmTxzoXVS0xkXOds-zln0EeRPf9_U4K8zknC1EmbcFrMDaCHqQJ9v8bfgFAvLVi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017218187</pqid></control><display><type>article</type><title>Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>González-Rueda, Ana ; Pedrosa, Victor ; Feord, Rachael C. ; Clopath, Claudia ; Paulsen, Ole</creator><creatorcontrib>González-Rueda, Ana ; Pedrosa, Victor ; Feord, Rachael C. ; Clopath, Claudia ; Paulsen, Ole</creatorcontrib><description>Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement. [Display omitted] •Conventional STDP is seen only during Down states in vivo•During Up states synaptic activation of L4 inputs leads to synaptic depression•Postsynaptic spikes protect against Up state-mediated synaptic weakening•These new plasticity rules improve S/N ratio and preserve stored information González-Rueda et al. show that presynaptic activation during slow-wave-sleep-like activity in vivo causes synaptic depression, unless it contributes to postsynaptic spiking. This plasticity rule offers an attractive mechanism for circuit refinement that improves signal-to-noise ratio and preserves previously stored information.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.01.047</identifier><identifier>PMID: 29503184</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Computer applications ; Cortex ; Electroencephalography ; Ethyl carbamate ; Excitatory Postsynaptic Potentials - physiology ; Female ; Firing pattern ; Homeostasis ; Hypotheses ; in vivo ; LTD ; LTP ; Male ; Mice ; Mice, 129 Strain ; Mice, Transgenic ; mouse ; network oscillations ; Neuronal Plasticity - physiology ; Neurons ; Neuroplasticity ; Preservation ; Presynaptic plasticity ; Sleep ; Sleep and wakefulness ; Sleep, Slow-Wave - physiology ; somatosensory cortex ; STDP ; Synapses ; Synapses - chemistry ; Synapses - physiology ; Synaptic depression ; Synaptic plasticity ; Up-Down state</subject><ispartof>Neuron (Cambridge, Mass.), 2018-03, Vol.97 (6), p.1244-1252.e5</ispartof><rights>2018 The Author(s)</rights><rights>Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2018. The Author(s)</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3</citedby><cites>FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29503184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Rueda, Ana</creatorcontrib><creatorcontrib>Pedrosa, Victor</creatorcontrib><creatorcontrib>Feord, Rachael C.</creatorcontrib><creatorcontrib>Clopath, Claudia</creatorcontrib><creatorcontrib>Paulsen, Ole</creatorcontrib><title>Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement. [Display omitted] •Conventional STDP is seen only during Down states in vivo•During Up states synaptic activation of L4 inputs leads to synaptic depression•Postsynaptic spikes protect against Up state-mediated synaptic weakening•These new plasticity rules improve S/N ratio and preserve stored information González-Rueda et al. show that presynaptic activation during slow-wave-sleep-like activity in vivo causes synaptic depression, unless it contributes to postsynaptic spiking. This plasticity rule offers an attractive mechanism for circuit refinement that improves signal-to-noise ratio and preserves previously stored information.</description><subject>Animals</subject><subject>Computer applications</subject><subject>Cortex</subject><subject>Electroencephalography</subject><subject>Ethyl carbamate</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Female</subject><subject>Firing pattern</subject><subject>Homeostasis</subject><subject>Hypotheses</subject><subject>in vivo</subject><subject>LTD</subject><subject>LTP</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Transgenic</subject><subject>mouse</subject><subject>network oscillations</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Preservation</subject><subject>Presynaptic plasticity</subject><subject>Sleep</subject><subject>Sleep and wakefulness</subject><subject>Sleep, Slow-Wave - physiology</subject><subject>somatosensory cortex</subject><subject>STDP</subject><subject>Synapses</subject><subject>Synapses - chemistry</subject><subject>Synapses - physiology</subject><subject>Synaptic depression</subject><subject>Synaptic plasticity</subject><subject>Up-Down state</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EotOBN0AoEhs2CXZsx8kGqWr5qVSJxfCztBz7puPBYwc7STVvw7P0yUg0bflZsPLifudcn3sQekFwQTCp3uwKD2MMvigxqQtMCszEI7QiuBE5I03zGK1w3VR5VQp6gk5T2mFMGG_IU3RSNhxTUrMVcmd6sJMdDvkF9OAN-CG7CDc-aeWsv85Cl23GdthGSNvgTLY5eNUPVmeXvh-HlJkxLtjGhZv8m5og3ziAPnf2O2T31jN7-_OrncIz9KRTLsHzu3eNvrx_9_n8Y3716cPl-dlVrjkXQ65boxnmuGQlM1x0LTMV45hhYB1pVa0rqmjVkEZTrYgQFPNO0DmrKBvT8Zau0dujbz-2ezB6DhWVk320exUPMigr_554u5XXYZK8FpSzejZ4fWcQw48R0iD3NmlwTnkIY5LzyXFNG1ov6Kt_0F0Yo5_jLZQoSU1m0zViR0rHkFKE7uEzBMulTrmTxzoXVS0xkXOds-zln0EeRPf9_U4K8zknC1EmbcFrMDaCHqQJ9v8bfgFAvLVi</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>González-Rueda, Ana</creator><creator>Pedrosa, Victor</creator><creator>Feord, Rachael C.</creator><creator>Clopath, Claudia</creator><creator>Paulsen, Ole</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180321</creationdate><title>Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo</title><author>González-Rueda, Ana ; Pedrosa, Victor ; Feord, Rachael C. ; Clopath, Claudia ; Paulsen, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Computer applications</topic><topic>Cortex</topic><topic>Electroencephalography</topic><topic>Ethyl carbamate</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Female</topic><topic>Firing pattern</topic><topic>Homeostasis</topic><topic>Hypotheses</topic><topic>in vivo</topic><topic>LTD</topic><topic>LTP</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Transgenic</topic><topic>mouse</topic><topic>network oscillations</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Preservation</topic><topic>Presynaptic plasticity</topic><topic>Sleep</topic><topic>Sleep and wakefulness</topic><topic>Sleep, Slow-Wave - physiology</topic><topic>somatosensory cortex</topic><topic>STDP</topic><topic>Synapses</topic><topic>Synapses - chemistry</topic><topic>Synapses - physiology</topic><topic>Synaptic depression</topic><topic>Synaptic plasticity</topic><topic>Up-Down state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Rueda, Ana</creatorcontrib><creatorcontrib>Pedrosa, Victor</creatorcontrib><creatorcontrib>Feord, Rachael C.</creatorcontrib><creatorcontrib>Clopath, Claudia</creatorcontrib><creatorcontrib>Paulsen, Ole</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Rueda, Ana</au><au>Pedrosa, Victor</au><au>Feord, Rachael C.</au><au>Clopath, Claudia</au><au>Paulsen, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>97</volume><issue>6</issue><spage>1244</spage><epage>1252.e5</epage><pages>1244-1252.e5</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement. [Display omitted] •Conventional STDP is seen only during Down states in vivo•During Up states synaptic activation of L4 inputs leads to synaptic depression•Postsynaptic spikes protect against Up state-mediated synaptic weakening•These new plasticity rules improve S/N ratio and preserve stored information González-Rueda et al. show that presynaptic activation during slow-wave-sleep-like activity in vivo causes synaptic depression, unless it contributes to postsynaptic spiking. This plasticity rule offers an attractive mechanism for circuit refinement that improves signal-to-noise ratio and preserves previously stored information.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29503184</pmid><doi>10.1016/j.neuron.2018.01.047</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2018-03, Vol.97 (6), p.1244-1252.e5
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5873548
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Computer applications
Cortex
Electroencephalography
Ethyl carbamate
Excitatory Postsynaptic Potentials - physiology
Female
Firing pattern
Homeostasis
Hypotheses
in vivo
LTD
LTP
Male
Mice
Mice, 129 Strain
Mice, Transgenic
mouse
network oscillations
Neuronal Plasticity - physiology
Neurons
Neuroplasticity
Preservation
Presynaptic plasticity
Sleep
Sleep and wakefulness
Sleep, Slow-Wave - physiology
somatosensory cortex
STDP
Synapses
Synapses - chemistry
Synapses - physiology
Synaptic depression
Synaptic plasticity
Up-Down state
title Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-Dependent%20Downscaling%20of%20Subthreshold%20Synaptic%20Inputs%20during%20Slow-Wave-Sleep-like%20Activity%20In%C2%A0Vivo&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Gonz%C3%A1lez-Rueda,%20Ana&rft.date=2018-03-21&rft.volume=97&rft.issue=6&rft.spage=1244&rft.epage=1252.e5&rft.pages=1244-1252.e5&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.01.047&rft_dat=%3Cproquest_pubme%3E2017218187%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017218187&rft_id=info:pmid/29503184&rfr_iscdi=true