Loading…
Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo
Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. U...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2018-03, Vol.97 (6), p.1244-1252.e5 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3 |
container_end_page | 1252.e5 |
container_issue | 6 |
container_start_page | 1244 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 97 |
creator | González-Rueda, Ana Pedrosa, Victor Feord, Rachael C. Clopath, Claudia Paulsen, Ole |
description | Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement.
[Display omitted]
•Conventional STDP is seen only during Down states in vivo•During Up states synaptic activation of L4 inputs leads to synaptic depression•Postsynaptic spikes protect against Up state-mediated synaptic weakening•These new plasticity rules improve S/N ratio and preserve stored information
González-Rueda et al. show that presynaptic activation during slow-wave-sleep-like activity in vivo causes synaptic depression, unless it contributes to postsynaptic spiking. This plasticity rule offers an attractive mechanism for circuit refinement that improves signal-to-noise ratio and preserves previously stored information. |
doi_str_mv | 10.1016/j.neuron.2018.01.047 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5873548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318300722</els_id><sourcerecordid>2017218187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotOBN0AoEhs2CXZsx8kGqWr5qVSJxfCztBz7puPBYwc7STVvw7P0yUg0bflZsPLifudcn3sQekFwQTCp3uwKD2MMvigxqQtMCszEI7QiuBE5I03zGK1w3VR5VQp6gk5T2mFMGG_IU3RSNhxTUrMVcmd6sJMdDvkF9OAN-CG7CDc-aeWsv85Cl23GdthGSNvgTLY5eNUPVmeXvh-HlJkxLtjGhZv8m5og3ziAPnf2O2T31jN7-_OrncIz9KRTLsHzu3eNvrx_9_n8Y3716cPl-dlVrjkXQ65boxnmuGQlM1x0LTMV45hhYB1pVa0rqmjVkEZTrYgQFPNO0DmrKBvT8Zau0dujbz-2ezB6DhWVk320exUPMigr_554u5XXYZK8FpSzejZ4fWcQw48R0iD3NmlwTnkIY5LzyXFNG1ov6Kt_0F0Yo5_jLZQoSU1m0zViR0rHkFKE7uEzBMulTrmTxzoXVS0xkXOds-zln0EeRPf9_U4K8zknC1EmbcFrMDaCHqQJ9v8bfgFAvLVi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017218187</pqid></control><display><type>article</type><title>Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>González-Rueda, Ana ; Pedrosa, Victor ; Feord, Rachael C. ; Clopath, Claudia ; Paulsen, Ole</creator><creatorcontrib>González-Rueda, Ana ; Pedrosa, Victor ; Feord, Rachael C. ; Clopath, Claudia ; Paulsen, Ole</creatorcontrib><description>Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement.
[Display omitted]
•Conventional STDP is seen only during Down states in vivo•During Up states synaptic activation of L4 inputs leads to synaptic depression•Postsynaptic spikes protect against Up state-mediated synaptic weakening•These new plasticity rules improve S/N ratio and preserve stored information
González-Rueda et al. show that presynaptic activation during slow-wave-sleep-like activity in vivo causes synaptic depression, unless it contributes to postsynaptic spiking. This plasticity rule offers an attractive mechanism for circuit refinement that improves signal-to-noise ratio and preserves previously stored information.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.01.047</identifier><identifier>PMID: 29503184</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Computer applications ; Cortex ; Electroencephalography ; Ethyl carbamate ; Excitatory Postsynaptic Potentials - physiology ; Female ; Firing pattern ; Homeostasis ; Hypotheses ; in vivo ; LTD ; LTP ; Male ; Mice ; Mice, 129 Strain ; Mice, Transgenic ; mouse ; network oscillations ; Neuronal Plasticity - physiology ; Neurons ; Neuroplasticity ; Preservation ; Presynaptic plasticity ; Sleep ; Sleep and wakefulness ; Sleep, Slow-Wave - physiology ; somatosensory cortex ; STDP ; Synapses ; Synapses - chemistry ; Synapses - physiology ; Synaptic depression ; Synaptic plasticity ; Up-Down state</subject><ispartof>Neuron (Cambridge, Mass.), 2018-03, Vol.97 (6), p.1244-1252.e5</ispartof><rights>2018 The Author(s)</rights><rights>Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2018. The Author(s)</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3</citedby><cites>FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29503184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Rueda, Ana</creatorcontrib><creatorcontrib>Pedrosa, Victor</creatorcontrib><creatorcontrib>Feord, Rachael C.</creatorcontrib><creatorcontrib>Clopath, Claudia</creatorcontrib><creatorcontrib>Paulsen, Ole</creatorcontrib><title>Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement.
[Display omitted]
•Conventional STDP is seen only during Down states in vivo•During Up states synaptic activation of L4 inputs leads to synaptic depression•Postsynaptic spikes protect against Up state-mediated synaptic weakening•These new plasticity rules improve S/N ratio and preserve stored information
González-Rueda et al. show that presynaptic activation during slow-wave-sleep-like activity in vivo causes synaptic depression, unless it contributes to postsynaptic spiking. This plasticity rule offers an attractive mechanism for circuit refinement that improves signal-to-noise ratio and preserves previously stored information.</description><subject>Animals</subject><subject>Computer applications</subject><subject>Cortex</subject><subject>Electroencephalography</subject><subject>Ethyl carbamate</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Female</subject><subject>Firing pattern</subject><subject>Homeostasis</subject><subject>Hypotheses</subject><subject>in vivo</subject><subject>LTD</subject><subject>LTP</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Transgenic</subject><subject>mouse</subject><subject>network oscillations</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Preservation</subject><subject>Presynaptic plasticity</subject><subject>Sleep</subject><subject>Sleep and wakefulness</subject><subject>Sleep, Slow-Wave - physiology</subject><subject>somatosensory cortex</subject><subject>STDP</subject><subject>Synapses</subject><subject>Synapses - chemistry</subject><subject>Synapses - physiology</subject><subject>Synaptic depression</subject><subject>Synaptic plasticity</subject><subject>Up-Down state</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EotOBN0AoEhs2CXZsx8kGqWr5qVSJxfCztBz7puPBYwc7STVvw7P0yUg0bflZsPLifudcn3sQekFwQTCp3uwKD2MMvigxqQtMCszEI7QiuBE5I03zGK1w3VR5VQp6gk5T2mFMGG_IU3RSNhxTUrMVcmd6sJMdDvkF9OAN-CG7CDc-aeWsv85Cl23GdthGSNvgTLY5eNUPVmeXvh-HlJkxLtjGhZv8m5og3ziAPnf2O2T31jN7-_OrncIz9KRTLsHzu3eNvrx_9_n8Y3716cPl-dlVrjkXQ65boxnmuGQlM1x0LTMV45hhYB1pVa0rqmjVkEZTrYgQFPNO0DmrKBvT8Zau0dujbz-2ezB6DhWVk320exUPMigr_554u5XXYZK8FpSzejZ4fWcQw48R0iD3NmlwTnkIY5LzyXFNG1ov6Kt_0F0Yo5_jLZQoSU1m0zViR0rHkFKE7uEzBMulTrmTxzoXVS0xkXOds-zln0EeRPf9_U4K8zknC1EmbcFrMDaCHqQJ9v8bfgFAvLVi</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>González-Rueda, Ana</creator><creator>Pedrosa, Victor</creator><creator>Feord, Rachael C.</creator><creator>Clopath, Claudia</creator><creator>Paulsen, Ole</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180321</creationdate><title>Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo</title><author>González-Rueda, Ana ; Pedrosa, Victor ; Feord, Rachael C. ; Clopath, Claudia ; Paulsen, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Computer applications</topic><topic>Cortex</topic><topic>Electroencephalography</topic><topic>Ethyl carbamate</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Female</topic><topic>Firing pattern</topic><topic>Homeostasis</topic><topic>Hypotheses</topic><topic>in vivo</topic><topic>LTD</topic><topic>LTP</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Transgenic</topic><topic>mouse</topic><topic>network oscillations</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Preservation</topic><topic>Presynaptic plasticity</topic><topic>Sleep</topic><topic>Sleep and wakefulness</topic><topic>Sleep, Slow-Wave - physiology</topic><topic>somatosensory cortex</topic><topic>STDP</topic><topic>Synapses</topic><topic>Synapses - chemistry</topic><topic>Synapses - physiology</topic><topic>Synaptic depression</topic><topic>Synaptic plasticity</topic><topic>Up-Down state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Rueda, Ana</creatorcontrib><creatorcontrib>Pedrosa, Victor</creatorcontrib><creatorcontrib>Feord, Rachael C.</creatorcontrib><creatorcontrib>Clopath, Claudia</creatorcontrib><creatorcontrib>Paulsen, Ole</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Rueda, Ana</au><au>Pedrosa, Victor</au><au>Feord, Rachael C.</au><au>Clopath, Claudia</au><au>Paulsen, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>97</volume><issue>6</issue><spage>1244</spage><epage>1252.e5</epage><pages>1244-1252.e5</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement.
[Display omitted]
•Conventional STDP is seen only during Down states in vivo•During Up states synaptic activation of L4 inputs leads to synaptic depression•Postsynaptic spikes protect against Up state-mediated synaptic weakening•These new plasticity rules improve S/N ratio and preserve stored information
González-Rueda et al. show that presynaptic activation during slow-wave-sleep-like activity in vivo causes synaptic depression, unless it contributes to postsynaptic spiking. This plasticity rule offers an attractive mechanism for circuit refinement that improves signal-to-noise ratio and preserves previously stored information.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29503184</pmid><doi>10.1016/j.neuron.2018.01.047</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2018-03, Vol.97 (6), p.1244-1252.e5 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5873548 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals Computer applications Cortex Electroencephalography Ethyl carbamate Excitatory Postsynaptic Potentials - physiology Female Firing pattern Homeostasis Hypotheses in vivo LTD LTP Male Mice Mice, 129 Strain Mice, Transgenic mouse network oscillations Neuronal Plasticity - physiology Neurons Neuroplasticity Preservation Presynaptic plasticity Sleep Sleep and wakefulness Sleep, Slow-Wave - physiology somatosensory cortex STDP Synapses Synapses - chemistry Synapses - physiology Synaptic depression Synaptic plasticity Up-Down state |
title | Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-Dependent%20Downscaling%20of%20Subthreshold%20Synaptic%20Inputs%20during%20Slow-Wave-Sleep-like%20Activity%20In%C2%A0Vivo&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Gonz%C3%A1lez-Rueda,%20Ana&rft.date=2018-03-21&rft.volume=97&rft.issue=6&rft.spage=1244&rft.epage=1252.e5&rft.pages=1244-1252.e5&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.01.047&rft_dat=%3Cproquest_pubme%3E2017218187%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-cbdc40502424d57fb4d645040e4f1ba8c63a36919c3ca177305f73896729df5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017218187&rft_id=info:pmid/29503184&rfr_iscdi=true |