Loading…
The secretome from bovine mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains factors associated with defense and immunity
Treatment of bovine mastitis with intramammary antibiotics is common, yet several concerns exist including failed efficacy for individual hosts or pathogens and the inability of approved drugs to revert mastitis-induced tissue damage to healthy tissue capable of returning to full milk production. Th...
Saved in:
Published in: | Scientific reports 2018-03, Vol.8 (1), p.5378-13, Article 5378 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Treatment of bovine mastitis with intramammary antibiotics is common, yet several concerns exist including failed efficacy for individual hosts or pathogens and the inability of approved drugs to revert mastitis-induced tissue damage to healthy tissue capable of returning to full milk production. These issues, in addition to aspects of public health such as accidental antibiotic residues in saleable milk and the potential for antimicrobial resistance, support the need to find alternative therapies for this costly disease. This study shows that the secretome, or collective factors, produced by mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains proteins associated with immunity and defense; all of which are necessary for healing damaged mammary gland tissue. Furthermore, we found that the MDC secretome remains effective after freezing and thawing, enhancing its therapeutic potential. Our results provide a foundation for further characterization of the individual secreted factors and the rationale for using the MDC secretome as a complementary treatment for bovine mastitis. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-23770-z |