Loading…
Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants
Respiratory distress syndrome (RDS) represents one of the major causes of mortality among preterm infants, and the best approach to treat it is an open research issue. The use of perfluorocarbons (PFC) along with non-invasive respiratory support techniques has proven the usefulness of PFC as a compl...
Saved in:
Published in: | International journal of environmental research and public health 2018-02, Vol.15 (3), p.423 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-9fe3b43789049ed347807324ef8fd774ec38dfcfd1e2484e2143a3b6b64247fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-9fe3b43789049ed347807324ef8fd774ec38dfcfd1e2484e2143a3b6b64247fb3 |
container_end_page | |
container_issue | 3 |
container_start_page | 423 |
container_title | International journal of environmental research and public health |
container_volume | 15 |
creator | Aramendia, Iñigo Fernandez-Gamiz, Unai Lopez-Arraiza, Alberto Rey-Santano, Carmen Mielgo, Victoria Basterretxea, Francisco Jose Sancho, Javier Gomez-Solaetxe, Miguel Angel |
description | Respiratory distress syndrome (RDS) represents one of the major causes of mortality among preterm infants, and the best approach to treat it is an open research issue. The use of perfluorocarbons (PFC) along with non-invasive respiratory support techniques has proven the usefulness of PFC as a complementary substance to achieve a more homogeneous surfactant distribution. The aim of this work was to study the inhaled particles generated by means of an intracorporeal inhalation catheter, evaluating the size and mass distribution of different PFC aerosols. In this article, we discuss different experiments with the PFC perfluorodecalin (PFD) and FC75 with a driving pressure of 4-5 bar, evaluating properties such as the aerodynamic diameter (D
), since its value is directly linked to particle deposition in the lung. Furthermore, we develop a numerical model with computational fluid dynamics (CFD) techniques. The computational results showed an accurate prediction of the airflow axial velocity at different downstream positions when compared with the data gathered from the real experiments. The numerical validation of the cumulative mass distribution for PFD particles also confirmed a closer match with the experimental data measured at the optimal distance of 60 mm from the catheter tip. In the case of FC75, the cumulative mass fraction for particles above 10 µm was considerable higher with a driving pressure of 5 bar. These numerical models could be a helpful tool to assist parametric studies of new non-invasive devices for the treatment of RDS in preterm infants. |
doi_str_mv | 10.3390/ijerph15030423 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5876968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010377071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9fe3b43789049ed347807324ef8fd774ec38dfcfd1e2484e2143a3b6b64247fb3</originalsourceid><addsrcrecordid>eNpdkUlPwzAQhS0EomxXjigSFy4Bb_VyQUJlFWU5wNlykjFNlcTFTir49xixqHCyPfP5ad48hPYJPmZM45N6DmExI2PMMKdsDW0RIXDOBSbrK_cR2o5xjjFTXOhNNKKa67EgegvdXrwtINQtdL1tMttV2f3QpkKZXne-gqbuXjLvsjMIPvomO0-VJYT3zPmQPQboIbTZTeds18ddtOFsE2Hv-9xBz5cXT5PrfPpwdTM5m-YlJ6rPtQNWcCaVxlxDxbhUWDLKwSlXScmhZKpypasIUK44UMKZZYUoBKdcuoLtoNMv3cVQtFCVafZgG7NINmx4N97W5m-nq2fmxS_NWEmhhUoCR98Cwb8OEHvT1rGEprEd-CEaiglmUmJJEnr4D537IXTJnqEEK47TFmmijr-oMm0pBnC_wxBsPnMyf3NKHw5WLfziP8GwD6fdj5M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108406192</pqid></control><display><type>article</type><title>Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Aramendia, Iñigo ; Fernandez-Gamiz, Unai ; Lopez-Arraiza, Alberto ; Rey-Santano, Carmen ; Mielgo, Victoria ; Basterretxea, Francisco Jose ; Sancho, Javier ; Gomez-Solaetxe, Miguel Angel</creator><creatorcontrib>Aramendia, Iñigo ; Fernandez-Gamiz, Unai ; Lopez-Arraiza, Alberto ; Rey-Santano, Carmen ; Mielgo, Victoria ; Basterretxea, Francisco Jose ; Sancho, Javier ; Gomez-Solaetxe, Miguel Angel</creatorcontrib><description>Respiratory distress syndrome (RDS) represents one of the major causes of mortality among preterm infants, and the best approach to treat it is an open research issue. The use of perfluorocarbons (PFC) along with non-invasive respiratory support techniques has proven the usefulness of PFC as a complementary substance to achieve a more homogeneous surfactant distribution. The aim of this work was to study the inhaled particles generated by means of an intracorporeal inhalation catheter, evaluating the size and mass distribution of different PFC aerosols. In this article, we discuss different experiments with the PFC perfluorodecalin (PFD) and FC75 with a driving pressure of 4-5 bar, evaluating properties such as the aerodynamic diameter (D
), since its value is directly linked to particle deposition in the lung. Furthermore, we develop a numerical model with computational fluid dynamics (CFD) techniques. The computational results showed an accurate prediction of the airflow axial velocity at different downstream positions when compared with the data gathered from the real experiments. The numerical validation of the cumulative mass distribution for PFD particles also confirmed a closer match with the experimental data measured at the optimal distance of 60 mm from the catheter tip. In the case of FC75, the cumulative mass fraction for particles above 10 µm was considerable higher with a driving pressure of 5 bar. These numerical models could be a helpful tool to assist parametric studies of new non-invasive devices for the treatment of RDS in preterm infants.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph15030423</identifier><identifier>PMID: 29495619</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Administration, Inhalation ; Aerodynamics ; Aerosols ; Air flow ; Babies ; Clinical trials ; Computational fluid dynamics ; Computer applications ; Flow velocity ; Fluid dynamics ; Fluorocarbons - therapeutic use ; Humans ; Hydrodynamics ; Infant, Newborn ; Infant, Premature ; Infants ; Inhalation ; Intubation ; Liquid Ventilation - methods ; Lungs ; Mass distribution ; Mathematical models ; Medical instruments ; Models, Theoretical ; Newborn babies ; Particle Size ; Pediatrics ; Perfluorocarbons ; Perfluorodecalin ; Premature babies ; Pressure ; Respiration ; Respiratory distress syndrome ; Respiratory Distress Syndrome, Newborn - therapy ; Surfactants ; Ventilators</subject><ispartof>International journal of environmental research and public health, 2018-02, Vol.15 (3), p.423</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9fe3b43789049ed347807324ef8fd774ec38dfcfd1e2484e2143a3b6b64247fb3</citedby><cites>FETCH-LOGICAL-c418t-9fe3b43789049ed347807324ef8fd774ec38dfcfd1e2484e2143a3b6b64247fb3</cites><orcidid>0000-0001-9194-2009 ; 0000-0002-4960-2729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2108406192/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2108406192?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29495619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aramendia, Iñigo</creatorcontrib><creatorcontrib>Fernandez-Gamiz, Unai</creatorcontrib><creatorcontrib>Lopez-Arraiza, Alberto</creatorcontrib><creatorcontrib>Rey-Santano, Carmen</creatorcontrib><creatorcontrib>Mielgo, Victoria</creatorcontrib><creatorcontrib>Basterretxea, Francisco Jose</creatorcontrib><creatorcontrib>Sancho, Javier</creatorcontrib><creatorcontrib>Gomez-Solaetxe, Miguel Angel</creatorcontrib><title>Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Respiratory distress syndrome (RDS) represents one of the major causes of mortality among preterm infants, and the best approach to treat it is an open research issue. The use of perfluorocarbons (PFC) along with non-invasive respiratory support techniques has proven the usefulness of PFC as a complementary substance to achieve a more homogeneous surfactant distribution. The aim of this work was to study the inhaled particles generated by means of an intracorporeal inhalation catheter, evaluating the size and mass distribution of different PFC aerosols. In this article, we discuss different experiments with the PFC perfluorodecalin (PFD) and FC75 with a driving pressure of 4-5 bar, evaluating properties such as the aerodynamic diameter (D
), since its value is directly linked to particle deposition in the lung. Furthermore, we develop a numerical model with computational fluid dynamics (CFD) techniques. The computational results showed an accurate prediction of the airflow axial velocity at different downstream positions when compared with the data gathered from the real experiments. The numerical validation of the cumulative mass distribution for PFD particles also confirmed a closer match with the experimental data measured at the optimal distance of 60 mm from the catheter tip. In the case of FC75, the cumulative mass fraction for particles above 10 µm was considerable higher with a driving pressure of 5 bar. These numerical models could be a helpful tool to assist parametric studies of new non-invasive devices for the treatment of RDS in preterm infants.</description><subject>Administration, Inhalation</subject><subject>Aerodynamics</subject><subject>Aerosols</subject><subject>Air flow</subject><subject>Babies</subject><subject>Clinical trials</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluorocarbons - therapeutic use</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Infant, Newborn</subject><subject>Infant, Premature</subject><subject>Infants</subject><subject>Inhalation</subject><subject>Intubation</subject><subject>Liquid Ventilation - methods</subject><subject>Lungs</subject><subject>Mass distribution</subject><subject>Mathematical models</subject><subject>Medical instruments</subject><subject>Models, Theoretical</subject><subject>Newborn babies</subject><subject>Particle Size</subject><subject>Pediatrics</subject><subject>Perfluorocarbons</subject><subject>Perfluorodecalin</subject><subject>Premature babies</subject><subject>Pressure</subject><subject>Respiration</subject><subject>Respiratory distress syndrome</subject><subject>Respiratory Distress Syndrome, Newborn - therapy</subject><subject>Surfactants</subject><subject>Ventilators</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUlPwzAQhS0EomxXjigSFy4Bb_VyQUJlFWU5wNlykjFNlcTFTir49xixqHCyPfP5ad48hPYJPmZM45N6DmExI2PMMKdsDW0RIXDOBSbrK_cR2o5xjjFTXOhNNKKa67EgegvdXrwtINQtdL1tMttV2f3QpkKZXne-gqbuXjLvsjMIPvomO0-VJYT3zPmQPQboIbTZTeds18ddtOFsE2Hv-9xBz5cXT5PrfPpwdTM5m-YlJ6rPtQNWcCaVxlxDxbhUWDLKwSlXScmhZKpypasIUK44UMKZZYUoBKdcuoLtoNMv3cVQtFCVafZgG7NINmx4N97W5m-nq2fmxS_NWEmhhUoCR98Cwb8OEHvT1rGEprEd-CEaiglmUmJJEnr4D537IXTJnqEEK47TFmmijr-oMm0pBnC_wxBsPnMyf3NKHw5WLfziP8GwD6fdj5M</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Aramendia, Iñigo</creator><creator>Fernandez-Gamiz, Unai</creator><creator>Lopez-Arraiza, Alberto</creator><creator>Rey-Santano, Carmen</creator><creator>Mielgo, Victoria</creator><creator>Basterretxea, Francisco Jose</creator><creator>Sancho, Javier</creator><creator>Gomez-Solaetxe, Miguel Angel</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9194-2009</orcidid><orcidid>https://orcid.org/0000-0002-4960-2729</orcidid></search><sort><creationdate>20180228</creationdate><title>Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants</title><author>Aramendia, Iñigo ; Fernandez-Gamiz, Unai ; Lopez-Arraiza, Alberto ; Rey-Santano, Carmen ; Mielgo, Victoria ; Basterretxea, Francisco Jose ; Sancho, Javier ; Gomez-Solaetxe, Miguel Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9fe3b43789049ed347807324ef8fd774ec38dfcfd1e2484e2143a3b6b64247fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Administration, Inhalation</topic><topic>Aerodynamics</topic><topic>Aerosols</topic><topic>Air flow</topic><topic>Babies</topic><topic>Clinical trials</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluorocarbons - therapeutic use</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Infant, Newborn</topic><topic>Infant, Premature</topic><topic>Infants</topic><topic>Inhalation</topic><topic>Intubation</topic><topic>Liquid Ventilation - methods</topic><topic>Lungs</topic><topic>Mass distribution</topic><topic>Mathematical models</topic><topic>Medical instruments</topic><topic>Models, Theoretical</topic><topic>Newborn babies</topic><topic>Particle Size</topic><topic>Pediatrics</topic><topic>Perfluorocarbons</topic><topic>Perfluorodecalin</topic><topic>Premature babies</topic><topic>Pressure</topic><topic>Respiration</topic><topic>Respiratory distress syndrome</topic><topic>Respiratory Distress Syndrome, Newborn - therapy</topic><topic>Surfactants</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aramendia, Iñigo</creatorcontrib><creatorcontrib>Fernandez-Gamiz, Unai</creatorcontrib><creatorcontrib>Lopez-Arraiza, Alberto</creatorcontrib><creatorcontrib>Rey-Santano, Carmen</creatorcontrib><creatorcontrib>Mielgo, Victoria</creatorcontrib><creatorcontrib>Basterretxea, Francisco Jose</creatorcontrib><creatorcontrib>Sancho, Javier</creatorcontrib><creatorcontrib>Gomez-Solaetxe, Miguel Angel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aramendia, Iñigo</au><au>Fernandez-Gamiz, Unai</au><au>Lopez-Arraiza, Alberto</au><au>Rey-Santano, Carmen</au><au>Mielgo, Victoria</au><au>Basterretxea, Francisco Jose</au><au>Sancho, Javier</au><au>Gomez-Solaetxe, Miguel Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>15</volume><issue>3</issue><spage>423</spage><pages>423-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Respiratory distress syndrome (RDS) represents one of the major causes of mortality among preterm infants, and the best approach to treat it is an open research issue. The use of perfluorocarbons (PFC) along with non-invasive respiratory support techniques has proven the usefulness of PFC as a complementary substance to achieve a more homogeneous surfactant distribution. The aim of this work was to study the inhaled particles generated by means of an intracorporeal inhalation catheter, evaluating the size and mass distribution of different PFC aerosols. In this article, we discuss different experiments with the PFC perfluorodecalin (PFD) and FC75 with a driving pressure of 4-5 bar, evaluating properties such as the aerodynamic diameter (D
), since its value is directly linked to particle deposition in the lung. Furthermore, we develop a numerical model with computational fluid dynamics (CFD) techniques. The computational results showed an accurate prediction of the airflow axial velocity at different downstream positions when compared with the data gathered from the real experiments. The numerical validation of the cumulative mass distribution for PFD particles also confirmed a closer match with the experimental data measured at the optimal distance of 60 mm from the catheter tip. In the case of FC75, the cumulative mass fraction for particles above 10 µm was considerable higher with a driving pressure of 5 bar. These numerical models could be a helpful tool to assist parametric studies of new non-invasive devices for the treatment of RDS in preterm infants.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29495619</pmid><doi>10.3390/ijerph15030423</doi><orcidid>https://orcid.org/0000-0001-9194-2009</orcidid><orcidid>https://orcid.org/0000-0002-4960-2729</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2018-02, Vol.15 (3), p.423 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5876968 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Administration, Inhalation Aerodynamics Aerosols Air flow Babies Clinical trials Computational fluid dynamics Computer applications Flow velocity Fluid dynamics Fluorocarbons - therapeutic use Humans Hydrodynamics Infant, Newborn Infant, Premature Infants Inhalation Intubation Liquid Ventilation - methods Lungs Mass distribution Mathematical models Medical instruments Models, Theoretical Newborn babies Particle Size Pediatrics Perfluorocarbons Perfluorodecalin Premature babies Pressure Respiration Respiratory distress syndrome Respiratory Distress Syndrome, Newborn - therapy Surfactants Ventilators |
title | Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Numerical%20Modeling%20of%20Aerosol%20Delivery%20for%20Preterm%20Infants&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Aramendia,%20I%C3%B1igo&rft.date=2018-02-28&rft.volume=15&rft.issue=3&rft.spage=423&rft.pages=423-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph15030423&rft_dat=%3Cproquest_pubme%3E2010377071%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9fe3b43789049ed347807324ef8fd774ec38dfcfd1e2484e2143a3b6b64247fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108406192&rft_id=info:pmid/29495619&rfr_iscdi=true |