Loading…

Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random

A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random....

Full description

Saved in:
Bibliographic Details
Published in:Behavior research methods 2018-04, Vol.50 (2), p.490-500
Main Authors: Pritikin, Joshua N., Brick, Timothy R., Neale, Michael C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3
cites cdi_FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3
container_end_page 500
container_issue 2
container_start_page 490
container_title Behavior research methods
container_volume 50
creator Pritikin, Joshua N.
Brick, Timothy R.
Neale, Michael C.
description A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.
doi_str_mv 10.3758/s13428-017-1011-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5882529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992004792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3</originalsourceid><addsrcrecordid>eNp1kU9vFSEUxYmxsfXpB3BjSNy4cCoXhhnYmJhGW5MaN7omDAPvUflTYabqt5f21VpN3ADh_jjccw9Cz4Acs5GL1xVYT0VHYOyAAHTDA3QEnPcd41Q8vHc-RI9rvSCECQr9I3RIJRt7JskRih_XsPgrXbxeLE65RB1w1D98XCMO_qsNfpfzjL_7ZYen3JZcZp8apNOMTU6LT2teK76RmIKtr24qs140jr5Wn7ZYL7i0yxyfoAOnQ7VPb_cN-vL-3eeTs-780-mHk7fnneFsXDpumO0FyIFPANY5kI442jo2g5QDM7Oe3OSkBgbNkxTTyJjTGrSxljnh2Aa92eterlO0s7FpKTqoy-KjLj9V1l79XUl-p7b5SnEhKG_T2aCXtwIlf1ttXVTzYmwIOtnmVoGUlJB-lLShL_5BL_Ja2oSqojASOUoi-kbBnjIl11qsu2sGiLoOU-3DVC1MdR2mGtqb5_dd3L34nV4D6B6orZS2tvz5-v-qvwCTEa0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170979084</pqid></control><display><type>article</type><title>Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random</title><source>Springer Nature</source><creator>Pritikin, Joshua N. ; Brick, Timothy R. ; Neale, Michael C.</creator><creatorcontrib>Pritikin, Joshua N. ; Brick, Timothy R. ; Neale, Michael C.</creatorcontrib><description>A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.</description><identifier>ISSN: 1554-3528</identifier><identifier>ISSN: 1554-351X</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-017-1011-6</identifier><identifier>PMID: 29374390</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adolescent ; Algorithms ; Behavioral Science and Psychology ; Child ; Cognitive Psychology ; Computer Simulation ; Conditional probability ; Data Interpretation, Statistical ; Economic models ; Female ; Freeware ; Humans ; Likelihood Functions ; Male ; Multivariate analysis ; Probability ; Psychology ; Random Allocation ; Software ; Structural equation modeling</subject><ispartof>Behavior research methods, 2018-04, Vol.50 (2), p.490-500</ispartof><rights>Psychonomic Society, Inc. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3</citedby><cites>FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29374390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Brick, Timothy R.</creatorcontrib><creatorcontrib>Neale, Michael C.</creatorcontrib><title>Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random</title><title>Behavior research methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.</description><subject>Adolescent</subject><subject>Algorithms</subject><subject>Behavioral Science and Psychology</subject><subject>Child</subject><subject>Cognitive Psychology</subject><subject>Computer Simulation</subject><subject>Conditional probability</subject><subject>Data Interpretation, Statistical</subject><subject>Economic models</subject><subject>Female</subject><subject>Freeware</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Male</subject><subject>Multivariate analysis</subject><subject>Probability</subject><subject>Psychology</subject><subject>Random Allocation</subject><subject>Software</subject><subject>Structural equation modeling</subject><issn>1554-3528</issn><issn>1554-351X</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU9vFSEUxYmxsfXpB3BjSNy4cCoXhhnYmJhGW5MaN7omDAPvUflTYabqt5f21VpN3ADh_jjccw9Cz4Acs5GL1xVYT0VHYOyAAHTDA3QEnPcd41Q8vHc-RI9rvSCECQr9I3RIJRt7JskRih_XsPgrXbxeLE65RB1w1D98XCMO_qsNfpfzjL_7ZYen3JZcZp8apNOMTU6LT2teK76RmIKtr24qs140jr5Wn7ZYL7i0yxyfoAOnQ7VPb_cN-vL-3eeTs-780-mHk7fnneFsXDpumO0FyIFPANY5kI442jo2g5QDM7Oe3OSkBgbNkxTTyJjTGrSxljnh2Aa92eterlO0s7FpKTqoy-KjLj9V1l79XUl-p7b5SnEhKG_T2aCXtwIlf1ttXVTzYmwIOtnmVoGUlJB-lLShL_5BL_Ja2oSqojASOUoi-kbBnjIl11qsu2sGiLoOU-3DVC1MdR2mGtqb5_dd3L34nV4D6B6orZS2tvz5-v-qvwCTEa0E</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Pritikin, Joshua N.</creator><creator>Brick, Timothy R.</creator><creator>Neale, Michael C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180401</creationdate><title>Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random</title><author>Pritikin, Joshua N. ; Brick, Timothy R. ; Neale, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adolescent</topic><topic>Algorithms</topic><topic>Behavioral Science and Psychology</topic><topic>Child</topic><topic>Cognitive Psychology</topic><topic>Computer Simulation</topic><topic>Conditional probability</topic><topic>Data Interpretation, Statistical</topic><topic>Economic models</topic><topic>Female</topic><topic>Freeware</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Male</topic><topic>Multivariate analysis</topic><topic>Probability</topic><topic>Psychology</topic><topic>Random Allocation</topic><topic>Software</topic><topic>Structural equation modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Brick, Timothy R.</creatorcontrib><creatorcontrib>Neale, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavior research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pritikin, Joshua N.</au><au>Brick, Timothy R.</au><au>Neale, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random</atitle><jtitle>Behavior research methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>50</volume><issue>2</issue><spage>490</spage><epage>500</epage><pages>490-500</pages><issn>1554-3528</issn><issn>1554-351X</issn><eissn>1554-3528</eissn><abstract>A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29374390</pmid><doi>10.3758/s13428-017-1011-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-3528
ispartof Behavior research methods, 2018-04, Vol.50 (2), p.490-500
issn 1554-3528
1554-351X
1554-3528
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5882529
source Springer Nature
subjects Adolescent
Algorithms
Behavioral Science and Psychology
Child
Cognitive Psychology
Computer Simulation
Conditional probability
Data Interpretation, Statistical
Economic models
Female
Freeware
Humans
Likelihood Functions
Male
Multivariate analysis
Probability
Psychology
Random Allocation
Software
Structural equation modeling
title Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20normal%20maximum%20likelihood%20with%20both%20ordinal%20and%20continuous%20variables,%20and%20data%20missing%20at%20random&rft.jtitle=Behavior%20research%20methods&rft.au=Pritikin,%20Joshua%20N.&rft.date=2018-04-01&rft.volume=50&rft.issue=2&rft.spage=490&rft.epage=500&rft.pages=490-500&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-017-1011-6&rft_dat=%3Cproquest_pubme%3E1992004792%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2170979084&rft_id=info:pmid/29374390&rfr_iscdi=true