Loading…
Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random
A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random....
Saved in:
Published in: | Behavior research methods 2018-04, Vol.50 (2), p.490-500 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3 |
container_end_page | 500 |
container_issue | 2 |
container_start_page | 490 |
container_title | Behavior research methods |
container_volume | 50 |
creator | Pritikin, Joshua N. Brick, Timothy R. Neale, Michael C. |
description | A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software. |
doi_str_mv | 10.3758/s13428-017-1011-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5882529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992004792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3</originalsourceid><addsrcrecordid>eNp1kU9vFSEUxYmxsfXpB3BjSNy4cCoXhhnYmJhGW5MaN7omDAPvUflTYabqt5f21VpN3ADh_jjccw9Cz4Acs5GL1xVYT0VHYOyAAHTDA3QEnPcd41Q8vHc-RI9rvSCECQr9I3RIJRt7JskRih_XsPgrXbxeLE65RB1w1D98XCMO_qsNfpfzjL_7ZYen3JZcZp8apNOMTU6LT2teK76RmIKtr24qs140jr5Wn7ZYL7i0yxyfoAOnQ7VPb_cN-vL-3eeTs-780-mHk7fnneFsXDpumO0FyIFPANY5kI442jo2g5QDM7Oe3OSkBgbNkxTTyJjTGrSxljnh2Aa92eterlO0s7FpKTqoy-KjLj9V1l79XUl-p7b5SnEhKG_T2aCXtwIlf1ttXVTzYmwIOtnmVoGUlJB-lLShL_5BL_Ja2oSqojASOUoi-kbBnjIl11qsu2sGiLoOU-3DVC1MdR2mGtqb5_dd3L34nV4D6B6orZS2tvz5-v-qvwCTEa0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170979084</pqid></control><display><type>article</type><title>Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random</title><source>Springer Nature</source><creator>Pritikin, Joshua N. ; Brick, Timothy R. ; Neale, Michael C.</creator><creatorcontrib>Pritikin, Joshua N. ; Brick, Timothy R. ; Neale, Michael C.</creatorcontrib><description>A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.</description><identifier>ISSN: 1554-3528</identifier><identifier>ISSN: 1554-351X</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-017-1011-6</identifier><identifier>PMID: 29374390</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adolescent ; Algorithms ; Behavioral Science and Psychology ; Child ; Cognitive Psychology ; Computer Simulation ; Conditional probability ; Data Interpretation, Statistical ; Economic models ; Female ; Freeware ; Humans ; Likelihood Functions ; Male ; Multivariate analysis ; Probability ; Psychology ; Random Allocation ; Software ; Structural equation modeling</subject><ispartof>Behavior research methods, 2018-04, Vol.50 (2), p.490-500</ispartof><rights>Psychonomic Society, Inc. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3</citedby><cites>FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29374390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Brick, Timothy R.</creatorcontrib><creatorcontrib>Neale, Michael C.</creatorcontrib><title>Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random</title><title>Behavior research methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.</description><subject>Adolescent</subject><subject>Algorithms</subject><subject>Behavioral Science and Psychology</subject><subject>Child</subject><subject>Cognitive Psychology</subject><subject>Computer Simulation</subject><subject>Conditional probability</subject><subject>Data Interpretation, Statistical</subject><subject>Economic models</subject><subject>Female</subject><subject>Freeware</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Male</subject><subject>Multivariate analysis</subject><subject>Probability</subject><subject>Psychology</subject><subject>Random Allocation</subject><subject>Software</subject><subject>Structural equation modeling</subject><issn>1554-3528</issn><issn>1554-351X</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU9vFSEUxYmxsfXpB3BjSNy4cCoXhhnYmJhGW5MaN7omDAPvUflTYabqt5f21VpN3ADh_jjccw9Cz4Acs5GL1xVYT0VHYOyAAHTDA3QEnPcd41Q8vHc-RI9rvSCECQr9I3RIJRt7JskRih_XsPgrXbxeLE65RB1w1D98XCMO_qsNfpfzjL_7ZYen3JZcZp8apNOMTU6LT2teK76RmIKtr24qs140jr5Wn7ZYL7i0yxyfoAOnQ7VPb_cN-vL-3eeTs-780-mHk7fnneFsXDpumO0FyIFPANY5kI442jo2g5QDM7Oe3OSkBgbNkxTTyJjTGrSxljnh2Aa92eterlO0s7FpKTqoy-KjLj9V1l79XUl-p7b5SnEhKG_T2aCXtwIlf1ttXVTzYmwIOtnmVoGUlJB-lLShL_5BL_Ja2oSqojASOUoi-kbBnjIl11qsu2sGiLoOU-3DVC1MdR2mGtqb5_dd3L34nV4D6B6orZS2tvz5-v-qvwCTEa0E</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Pritikin, Joshua N.</creator><creator>Brick, Timothy R.</creator><creator>Neale, Michael C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180401</creationdate><title>Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random</title><author>Pritikin, Joshua N. ; Brick, Timothy R. ; Neale, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adolescent</topic><topic>Algorithms</topic><topic>Behavioral Science and Psychology</topic><topic>Child</topic><topic>Cognitive Psychology</topic><topic>Computer Simulation</topic><topic>Conditional probability</topic><topic>Data Interpretation, Statistical</topic><topic>Economic models</topic><topic>Female</topic><topic>Freeware</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Male</topic><topic>Multivariate analysis</topic><topic>Probability</topic><topic>Psychology</topic><topic>Random Allocation</topic><topic>Software</topic><topic>Structural equation modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Brick, Timothy R.</creatorcontrib><creatorcontrib>Neale, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavior research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pritikin, Joshua N.</au><au>Brick, Timothy R.</au><au>Neale, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random</atitle><jtitle>Behavior research methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>50</volume><issue>2</issue><spage>490</spage><epage>500</epage><pages>490-500</pages><issn>1554-3528</issn><issn>1554-351X</issn><eissn>1554-3528</eissn><abstract>A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29374390</pmid><doi>10.3758/s13428-017-1011-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-3528 |
ispartof | Behavior research methods, 2018-04, Vol.50 (2), p.490-500 |
issn | 1554-3528 1554-351X 1554-3528 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5882529 |
source | Springer Nature |
subjects | Adolescent Algorithms Behavioral Science and Psychology Child Cognitive Psychology Computer Simulation Conditional probability Data Interpretation, Statistical Economic models Female Freeware Humans Likelihood Functions Male Multivariate analysis Probability Psychology Random Allocation Software Structural equation modeling |
title | Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20normal%20maximum%20likelihood%20with%20both%20ordinal%20and%20continuous%20variables,%20and%20data%20missing%20at%20random&rft.jtitle=Behavior%20research%20methods&rft.au=Pritikin,%20Joshua%20N.&rft.date=2018-04-01&rft.volume=50&rft.issue=2&rft.spage=490&rft.epage=500&rft.pages=490-500&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-017-1011-6&rft_dat=%3Cproquest_pubme%3E1992004792%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-5c3e481965b11eff19f0f2743c69963cdabfbf9a13100398b733faa1acee3f8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2170979084&rft_id=info:pmid/29374390&rfr_iscdi=true |