Loading…

A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals

The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2018-04, Vol.51 (2), p.386-394
Main Authors: Raventós, M., Lehmann, E. H., Boin, M., Morgano, M., Hovind, J., Harti, R., Valsecchi, J., Kaestner, A., Carminati, C., Boillat, P., Trtik, P., Schmid, F., Siegwart, M., Mannes, D., Strobl, M., Grünzweig, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943
cites cdi_FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943
container_end_page 394
container_issue 2
container_start_page 386
container_title Journal of applied crystallography
container_volume 51
creator Raventós, M.
Lehmann, E. H.
Boin, M.
Morgano, M.
Hovind, J.
Harti, R.
Valsecchi, J.
Kaestner, A.
Carminati, C.
Boillat, P.
Trtik, P.
Schmid, F.
Siegwart, M.
Mannes, D.
Strobl, M.
Grünzweig, C.
description The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients. This article describes the development and application of a Monte Carlo tool to improve the quantification capabilities of neutron imaging applied to polycrystals. The combination of modelling and experimentation gives a better understanding of how scattering coming from polycrystalline samples affects neutron imaging experiments.
doi_str_mv 10.1107/S1600576718001607
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5884388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025802008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq0KVCjtD-ilssSllwXbiWPngoRW_UIgUD_O1thxFqOsHWwHtP--jpYiKAdO72jmmVczehH6SMkRpUQc_6INIVw0gkpCSi3eoP25tZh7O0_qPfQupZuZEYy9RXusbbjgjdhH9hRfBJ8tXkIcAoZxjAHMNe5DxMlAzjY6v8ImxGhNdsHjHO4hdgnfTuCzy5DdncXeTjmWoVvDauZDj8cwbEzcpAxDeo92-yL2w4MeoD9fv_xefl-cX377sTw9X5haCLownSGNbEHKvhK804Zzq1mvdVu1HdONplA3FCiIHqAuolttLQPGalqRtq4O0MnWd5z02nbG-hxhUGMsd8WNCuDU84l312oV7hSXsq6kLAafHwxiuJ1symrtkrHDAN6GKSlGGJeEETKjh_-hN2GKvrw3U5TXLa1ZoeiWMjGkFG3_eAwlag5RvQix7Hx6-sXjxr_UCtBugXs32M3rjups-ZNdXXJKafUX-jaqLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021549142</pqid></control><display><type>article</type><title>A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Raventós, M. ; Lehmann, E. H. ; Boin, M. ; Morgano, M. ; Hovind, J. ; Harti, R. ; Valsecchi, J. ; Kaestner, A. ; Carminati, C. ; Boillat, P. ; Trtik, P. ; Schmid, F. ; Siegwart, M. ; Mannes, D. ; Strobl, M. ; Grünzweig, C.</creator><creatorcontrib>Raventós, M. ; Lehmann, E. H. ; Boin, M. ; Morgano, M. ; Hovind, J. ; Harti, R. ; Valsecchi, J. ; Kaestner, A. ; Carminati, C. ; Boillat, P. ; Trtik, P. ; Schmid, F. ; Siegwart, M. ; Mannes, D. ; Strobl, M. ; Grünzweig, C.</creatorcontrib><description>The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients. This article describes the development and application of a Monte Carlo tool to improve the quantification capabilities of neutron imaging applied to polycrystals. The combination of modelling and experimentation gives a better understanding of how scattering coming from polycrystalline samples affects neutron imaging experiments.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576718001607</identifier><identifier>PMID: 29657567</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Artefacts ; Attenuation coefficients ; Coherent scattering ; Computer simulation ; Copper ; Imaging ; Inspection ; Iron ; Materials science ; Materials selection ; Mathematical models ; Medical imaging ; Monte Carlo methods ; neutron imaging ; Neutron radiography ; neutron scattering ; Neutrons ; Order parameters ; Polycrystals ; quantification ; Radiography ; Research Papers ; Vanadium</subject><ispartof>Journal of applied crystallography, 2018-04, Vol.51 (2), p.386-394</ispartof><rights>M. Raventós et al. 2018</rights><rights>Copyright Blackwell Publishing Ltd. Apr 2018</rights><rights>M. Raventós et al. 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943</citedby><cites>FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29657567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raventós, M.</creatorcontrib><creatorcontrib>Lehmann, E. H.</creatorcontrib><creatorcontrib>Boin, M.</creatorcontrib><creatorcontrib>Morgano, M.</creatorcontrib><creatorcontrib>Hovind, J.</creatorcontrib><creatorcontrib>Harti, R.</creatorcontrib><creatorcontrib>Valsecchi, J.</creatorcontrib><creatorcontrib>Kaestner, A.</creatorcontrib><creatorcontrib>Carminati, C.</creatorcontrib><creatorcontrib>Boillat, P.</creatorcontrib><creatorcontrib>Trtik, P.</creatorcontrib><creatorcontrib>Schmid, F.</creatorcontrib><creatorcontrib>Siegwart, M.</creatorcontrib><creatorcontrib>Mannes, D.</creatorcontrib><creatorcontrib>Strobl, M.</creatorcontrib><creatorcontrib>Grünzweig, C.</creatorcontrib><title>A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals</title><title>Journal of applied crystallography</title><addtitle>J Appl Crystallogr</addtitle><description>The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients. This article describes the development and application of a Monte Carlo tool to improve the quantification capabilities of neutron imaging applied to polycrystals. The combination of modelling and experimentation gives a better understanding of how scattering coming from polycrystalline samples affects neutron imaging experiments.</description><subject>Artefacts</subject><subject>Attenuation coefficients</subject><subject>Coherent scattering</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Imaging</subject><subject>Inspection</subject><subject>Iron</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Monte Carlo methods</subject><subject>neutron imaging</subject><subject>Neutron radiography</subject><subject>neutron scattering</subject><subject>Neutrons</subject><subject>Order parameters</subject><subject>Polycrystals</subject><subject>quantification</subject><subject>Radiography</subject><subject>Research Papers</subject><subject>Vanadium</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1P3DAQhq0KVCjtD-ilssSllwXbiWPngoRW_UIgUD_O1thxFqOsHWwHtP--jpYiKAdO72jmmVczehH6SMkRpUQc_6INIVw0gkpCSi3eoP25tZh7O0_qPfQupZuZEYy9RXusbbjgjdhH9hRfBJ8tXkIcAoZxjAHMNe5DxMlAzjY6v8ImxGhNdsHjHO4hdgnfTuCzy5DdncXeTjmWoVvDauZDj8cwbEzcpAxDeo92-yL2w4MeoD9fv_xefl-cX377sTw9X5haCLownSGNbEHKvhK804Zzq1mvdVu1HdONplA3FCiIHqAuolttLQPGalqRtq4O0MnWd5z02nbG-hxhUGMsd8WNCuDU84l312oV7hSXsq6kLAafHwxiuJ1symrtkrHDAN6GKSlGGJeEETKjh_-hN2GKvrw3U5TXLa1ZoeiWMjGkFG3_eAwlag5RvQix7Hx6-sXjxr_UCtBugXs32M3rjups-ZNdXXJKafUX-jaqLg</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Raventós, M.</creator><creator>Lehmann, E. H.</creator><creator>Boin, M.</creator><creator>Morgano, M.</creator><creator>Hovind, J.</creator><creator>Harti, R.</creator><creator>Valsecchi, J.</creator><creator>Kaestner, A.</creator><creator>Carminati, C.</creator><creator>Boillat, P.</creator><creator>Trtik, P.</creator><creator>Schmid, F.</creator><creator>Siegwart, M.</creator><creator>Mannes, D.</creator><creator>Strobl, M.</creator><creator>Grünzweig, C.</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201804</creationdate><title>A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals</title><author>Raventós, M. ; Lehmann, E. H. ; Boin, M. ; Morgano, M. ; Hovind, J. ; Harti, R. ; Valsecchi, J. ; Kaestner, A. ; Carminati, C. ; Boillat, P. ; Trtik, P. ; Schmid, F. ; Siegwart, M. ; Mannes, D. ; Strobl, M. ; Grünzweig, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artefacts</topic><topic>Attenuation coefficients</topic><topic>Coherent scattering</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Imaging</topic><topic>Inspection</topic><topic>Iron</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Monte Carlo methods</topic><topic>neutron imaging</topic><topic>Neutron radiography</topic><topic>neutron scattering</topic><topic>Neutrons</topic><topic>Order parameters</topic><topic>Polycrystals</topic><topic>quantification</topic><topic>Radiography</topic><topic>Research Papers</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raventós, M.</creatorcontrib><creatorcontrib>Lehmann, E. H.</creatorcontrib><creatorcontrib>Boin, M.</creatorcontrib><creatorcontrib>Morgano, M.</creatorcontrib><creatorcontrib>Hovind, J.</creatorcontrib><creatorcontrib>Harti, R.</creatorcontrib><creatorcontrib>Valsecchi, J.</creatorcontrib><creatorcontrib>Kaestner, A.</creatorcontrib><creatorcontrib>Carminati, C.</creatorcontrib><creatorcontrib>Boillat, P.</creatorcontrib><creatorcontrib>Trtik, P.</creatorcontrib><creatorcontrib>Schmid, F.</creatorcontrib><creatorcontrib>Siegwart, M.</creatorcontrib><creatorcontrib>Mannes, D.</creatorcontrib><creatorcontrib>Strobl, M.</creatorcontrib><creatorcontrib>Grünzweig, C.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raventós, M.</au><au>Lehmann, E. H.</au><au>Boin, M.</au><au>Morgano, M.</au><au>Hovind, J.</au><au>Harti, R.</au><au>Valsecchi, J.</au><au>Kaestner, A.</au><au>Carminati, C.</au><au>Boillat, P.</au><au>Trtik, P.</au><au>Schmid, F.</au><au>Siegwart, M.</au><au>Mannes, D.</au><au>Strobl, M.</au><au>Grünzweig, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J Appl Crystallogr</addtitle><date>2018-04</date><risdate>2018</risdate><volume>51</volume><issue>2</issue><spage>386</spage><epage>394</epage><pages>386-394</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients. This article describes the development and application of a Monte Carlo tool to improve the quantification capabilities of neutron imaging applied to polycrystals. The combination of modelling and experimentation gives a better understanding of how scattering coming from polycrystalline samples affects neutron imaging experiments.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>29657567</pmid><doi>10.1107/S1600576718001607</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2018-04, Vol.51 (2), p.386-394
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5884388
source Wiley-Blackwell Read & Publish Collection
subjects Artefacts
Attenuation coefficients
Coherent scattering
Computer simulation
Copper
Imaging
Inspection
Iron
Materials science
Materials selection
Mathematical models
Medical imaging
Monte Carlo methods
neutron imaging
Neutron radiography
neutron scattering
Neutrons
Order parameters
Polycrystals
quantification
Radiography
Research Papers
Vanadium
title A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Monte%20Carlo%20approach%20for%20scattering%20correction%20towards%20quantitative%20neutron%20imaging%20of%20polycrystals&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Ravent%C3%B3s,%20M.&rft.date=2018-04&rft.volume=51&rft.issue=2&rft.spage=386&rft.epage=394&rft.pages=386-394&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576718001607&rft_dat=%3Cproquest_pubme%3E2025802008%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2021549142&rft_id=info:pmid/29657567&rfr_iscdi=true