Loading…
A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals
The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two...
Saved in:
Published in: | Journal of applied crystallography 2018-04, Vol.51 (2), p.386-394 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943 |
---|---|
cites | cdi_FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943 |
container_end_page | 394 |
container_issue | 2 |
container_start_page | 386 |
container_title | Journal of applied crystallography |
container_volume | 51 |
creator | Raventós, M. Lehmann, E. H. Boin, M. Morgano, M. Hovind, J. Harti, R. Valsecchi, J. Kaestner, A. Carminati, C. Boillat, P. Trtik, P. Schmid, F. Siegwart, M. Mannes, D. Strobl, M. Grünzweig, C. |
description | The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients.
This article describes the development and application of a Monte Carlo tool to improve the quantification capabilities of neutron imaging applied to polycrystals. The combination of modelling and experimentation gives a better understanding of how scattering coming from polycrystalline samples affects neutron imaging experiments. |
doi_str_mv | 10.1107/S1600576718001607 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5884388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025802008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq0KVCjtD-ilssSllwXbiWPngoRW_UIgUD_O1thxFqOsHWwHtP--jpYiKAdO72jmmVczehH6SMkRpUQc_6INIVw0gkpCSi3eoP25tZh7O0_qPfQupZuZEYy9RXusbbjgjdhH9hRfBJ8tXkIcAoZxjAHMNe5DxMlAzjY6v8ImxGhNdsHjHO4hdgnfTuCzy5DdncXeTjmWoVvDauZDj8cwbEzcpAxDeo92-yL2w4MeoD9fv_xefl-cX377sTw9X5haCLownSGNbEHKvhK804Zzq1mvdVu1HdONplA3FCiIHqAuolttLQPGalqRtq4O0MnWd5z02nbG-hxhUGMsd8WNCuDU84l312oV7hSXsq6kLAafHwxiuJ1symrtkrHDAN6GKSlGGJeEETKjh_-hN2GKvrw3U5TXLa1ZoeiWMjGkFG3_eAwlag5RvQix7Hx6-sXjxr_UCtBugXs32M3rjups-ZNdXXJKafUX-jaqLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021549142</pqid></control><display><type>article</type><title>A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Raventós, M. ; Lehmann, E. H. ; Boin, M. ; Morgano, M. ; Hovind, J. ; Harti, R. ; Valsecchi, J. ; Kaestner, A. ; Carminati, C. ; Boillat, P. ; Trtik, P. ; Schmid, F. ; Siegwart, M. ; Mannes, D. ; Strobl, M. ; Grünzweig, C.</creator><creatorcontrib>Raventós, M. ; Lehmann, E. H. ; Boin, M. ; Morgano, M. ; Hovind, J. ; Harti, R. ; Valsecchi, J. ; Kaestner, A. ; Carminati, C. ; Boillat, P. ; Trtik, P. ; Schmid, F. ; Siegwart, M. ; Mannes, D. ; Strobl, M. ; Grünzweig, C.</creatorcontrib><description>The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients.
This article describes the development and application of a Monte Carlo tool to improve the quantification capabilities of neutron imaging applied to polycrystals. The combination of modelling and experimentation gives a better understanding of how scattering coming from polycrystalline samples affects neutron imaging experiments.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576718001607</identifier><identifier>PMID: 29657567</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Artefacts ; Attenuation coefficients ; Coherent scattering ; Computer simulation ; Copper ; Imaging ; Inspection ; Iron ; Materials science ; Materials selection ; Mathematical models ; Medical imaging ; Monte Carlo methods ; neutron imaging ; Neutron radiography ; neutron scattering ; Neutrons ; Order parameters ; Polycrystals ; quantification ; Radiography ; Research Papers ; Vanadium</subject><ispartof>Journal of applied crystallography, 2018-04, Vol.51 (2), p.386-394</ispartof><rights>M. Raventós et al. 2018</rights><rights>Copyright Blackwell Publishing Ltd. Apr 2018</rights><rights>M. Raventós et al. 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943</citedby><cites>FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29657567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raventós, M.</creatorcontrib><creatorcontrib>Lehmann, E. H.</creatorcontrib><creatorcontrib>Boin, M.</creatorcontrib><creatorcontrib>Morgano, M.</creatorcontrib><creatorcontrib>Hovind, J.</creatorcontrib><creatorcontrib>Harti, R.</creatorcontrib><creatorcontrib>Valsecchi, J.</creatorcontrib><creatorcontrib>Kaestner, A.</creatorcontrib><creatorcontrib>Carminati, C.</creatorcontrib><creatorcontrib>Boillat, P.</creatorcontrib><creatorcontrib>Trtik, P.</creatorcontrib><creatorcontrib>Schmid, F.</creatorcontrib><creatorcontrib>Siegwart, M.</creatorcontrib><creatorcontrib>Mannes, D.</creatorcontrib><creatorcontrib>Strobl, M.</creatorcontrib><creatorcontrib>Grünzweig, C.</creatorcontrib><title>A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals</title><title>Journal of applied crystallography</title><addtitle>J Appl Crystallogr</addtitle><description>The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients.
This article describes the development and application of a Monte Carlo tool to improve the quantification capabilities of neutron imaging applied to polycrystals. The combination of modelling and experimentation gives a better understanding of how scattering coming from polycrystalline samples affects neutron imaging experiments.</description><subject>Artefacts</subject><subject>Attenuation coefficients</subject><subject>Coherent scattering</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Imaging</subject><subject>Inspection</subject><subject>Iron</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Monte Carlo methods</subject><subject>neutron imaging</subject><subject>Neutron radiography</subject><subject>neutron scattering</subject><subject>Neutrons</subject><subject>Order parameters</subject><subject>Polycrystals</subject><subject>quantification</subject><subject>Radiography</subject><subject>Research Papers</subject><subject>Vanadium</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1P3DAQhq0KVCjtD-ilssSllwXbiWPngoRW_UIgUD_O1thxFqOsHWwHtP--jpYiKAdO72jmmVczehH6SMkRpUQc_6INIVw0gkpCSi3eoP25tZh7O0_qPfQupZuZEYy9RXusbbjgjdhH9hRfBJ8tXkIcAoZxjAHMNe5DxMlAzjY6v8ImxGhNdsHjHO4hdgnfTuCzy5DdncXeTjmWoVvDauZDj8cwbEzcpAxDeo92-yL2w4MeoD9fv_xefl-cX377sTw9X5haCLownSGNbEHKvhK804Zzq1mvdVu1HdONplA3FCiIHqAuolttLQPGalqRtq4O0MnWd5z02nbG-hxhUGMsd8WNCuDU84l312oV7hSXsq6kLAafHwxiuJ1symrtkrHDAN6GKSlGGJeEETKjh_-hN2GKvrw3U5TXLa1ZoeiWMjGkFG3_eAwlag5RvQix7Hx6-sXjxr_UCtBugXs32M3rjups-ZNdXXJKafUX-jaqLg</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Raventós, M.</creator><creator>Lehmann, E. H.</creator><creator>Boin, M.</creator><creator>Morgano, M.</creator><creator>Hovind, J.</creator><creator>Harti, R.</creator><creator>Valsecchi, J.</creator><creator>Kaestner, A.</creator><creator>Carminati, C.</creator><creator>Boillat, P.</creator><creator>Trtik, P.</creator><creator>Schmid, F.</creator><creator>Siegwart, M.</creator><creator>Mannes, D.</creator><creator>Strobl, M.</creator><creator>Grünzweig, C.</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201804</creationdate><title>A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals</title><author>Raventós, M. ; Lehmann, E. H. ; Boin, M. ; Morgano, M. ; Hovind, J. ; Harti, R. ; Valsecchi, J. ; Kaestner, A. ; Carminati, C. ; Boillat, P. ; Trtik, P. ; Schmid, F. ; Siegwart, M. ; Mannes, D. ; Strobl, M. ; Grünzweig, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artefacts</topic><topic>Attenuation coefficients</topic><topic>Coherent scattering</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Imaging</topic><topic>Inspection</topic><topic>Iron</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Monte Carlo methods</topic><topic>neutron imaging</topic><topic>Neutron radiography</topic><topic>neutron scattering</topic><topic>Neutrons</topic><topic>Order parameters</topic><topic>Polycrystals</topic><topic>quantification</topic><topic>Radiography</topic><topic>Research Papers</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raventós, M.</creatorcontrib><creatorcontrib>Lehmann, E. H.</creatorcontrib><creatorcontrib>Boin, M.</creatorcontrib><creatorcontrib>Morgano, M.</creatorcontrib><creatorcontrib>Hovind, J.</creatorcontrib><creatorcontrib>Harti, R.</creatorcontrib><creatorcontrib>Valsecchi, J.</creatorcontrib><creatorcontrib>Kaestner, A.</creatorcontrib><creatorcontrib>Carminati, C.</creatorcontrib><creatorcontrib>Boillat, P.</creatorcontrib><creatorcontrib>Trtik, P.</creatorcontrib><creatorcontrib>Schmid, F.</creatorcontrib><creatorcontrib>Siegwart, M.</creatorcontrib><creatorcontrib>Mannes, D.</creatorcontrib><creatorcontrib>Strobl, M.</creatorcontrib><creatorcontrib>Grünzweig, C.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raventós, M.</au><au>Lehmann, E. H.</au><au>Boin, M.</au><au>Morgano, M.</au><au>Hovind, J.</au><au>Harti, R.</au><au>Valsecchi, J.</au><au>Kaestner, A.</au><au>Carminati, C.</au><au>Boillat, P.</au><au>Trtik, P.</au><au>Schmid, F.</au><au>Siegwart, M.</au><au>Mannes, D.</au><au>Strobl, M.</au><au>Grünzweig, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J Appl Crystallogr</addtitle><date>2018-04</date><risdate>2018</risdate><volume>51</volume><issue>2</issue><spage>386</spage><epage>394</epage><pages>386-394</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients.
This article describes the development and application of a Monte Carlo tool to improve the quantification capabilities of neutron imaging applied to polycrystals. The combination of modelling and experimentation gives a better understanding of how scattering coming from polycrystalline samples affects neutron imaging experiments.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>29657567</pmid><doi>10.1107/S1600576718001607</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2018-04, Vol.51 (2), p.386-394 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5884388 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Artefacts Attenuation coefficients Coherent scattering Computer simulation Copper Imaging Inspection Iron Materials science Materials selection Mathematical models Medical imaging Monte Carlo methods neutron imaging Neutron radiography neutron scattering Neutrons Order parameters Polycrystals quantification Radiography Research Papers Vanadium |
title | A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Monte%20Carlo%20approach%20for%20scattering%20correction%20towards%20quantitative%20neutron%20imaging%20of%20polycrystals&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Ravent%C3%B3s,%20M.&rft.date=2018-04&rft.volume=51&rft.issue=2&rft.spage=386&rft.epage=394&rft.pages=386-394&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576718001607&rft_dat=%3Cproquest_pubme%3E2025802008%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4771-cdc0689a88f375dbc55eb2fbb939d2b6b1a461a1a7faa41a7b9bee2a224130943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2021549142&rft_id=info:pmid/29657567&rfr_iscdi=true |