Loading…

Small molecule detection with aptamer based lateral flow assays: Applying aptamer-C-reactive protein cross-recognition for ampicillin detection

Aptamer-based lateral flow assays (LFAs) are an emerging field of aptamer applications due to numerous potential applications. When compared to antibodies, potential advantages like cost effectiveness or lower batch to batch variations are evident. The development of LFAs for small molecules, howeve...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-04, Vol.8 (1), p.5628-10, Article 5628
Main Authors: Kaiser, Lars, Weisser, Julia, Kohl, Matthias, Deigner, Hans-Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aptamer-based lateral flow assays (LFAs) are an emerging field of aptamer applications due to numerous potential applications. When compared to antibodies, potential advantages like cost effectiveness or lower batch to batch variations are evident. The development of LFAs for small molecules, however, is still challenging due to several reasons, primarily linked to target size and accessible interaction sites. In small molecule analysis, however, aptamers in many cases are preferable since immunogenicity is not required and they may exhibit even higher target selectivity. We report the first cross-recognition of a small molecule (ampicillin) and a protein (C-reactive protein), predicted by in-silico analysis, then experimentally confirmed - using two different aptamers. These features can be exploited for developing an aptamer-based LFA for label-free ampicillin detection, functioning also for analysis in milk extract. Most importantly, the principal setup denotes a novel, transferable and versatile general approach for detection of small molecules using competitive LFAs, unlikely to be generally realized by aptamer-DNA-binding otherwise.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-23963-6