Loading…

Single Molecule Force Measurements in Living Cells Reveal a Minimally Tensioned Integrin State

Integrins mediate cell adhesion to the extracellular matrix and enable the construction of complex, multicellular organisms, yet fundamental aspects of integrin-based adhesion remain poorly understood. Notably, the magnitude of the mechanical load experienced by individual integrins within living ce...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2016-12, Vol.10 (12), p.10745-10752
Main Authors: Chang, Alice C, Mekhdjian, Armen H, Morimatsu, Masatoshi, Denisin, Aleksandra Kirillovna, Pruitt, Beth L, Dunn, Alexander R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a429t-2cf3f24c4c1c582fd1205a254387dc9debce2b6ceeacd23857f59614928ddd983
cites cdi_FETCH-LOGICAL-a429t-2cf3f24c4c1c582fd1205a254387dc9debce2b6ceeacd23857f59614928ddd983
container_end_page 10752
container_issue 12
container_start_page 10745
container_title ACS nano
container_volume 10
creator Chang, Alice C
Mekhdjian, Armen H
Morimatsu, Masatoshi
Denisin, Aleksandra Kirillovna
Pruitt, Beth L
Dunn, Alexander R
description Integrins mediate cell adhesion to the extracellular matrix and enable the construction of complex, multicellular organisms, yet fundamental aspects of integrin-based adhesion remain poorly understood. Notably, the magnitude of the mechanical load experienced by individual integrins within living cells is unclear, due principally to limitations inherent to existing techniques. Here we use Förster resonance energy transfer-based molecular tension sensors to directly measure the distribution of loads experienced by individual integrins in living cells. We find that a large fraction of integrins bear modest loads of 1–3 pN, while subpopulations bearing higher loads are enriched within adhesions. Further, our data indicate that integrin engagement with the fibronectin synergy site, a secondary binding site specifically for α5β1 integrin, leads to increased levels of α5β1 integrin recruitment to adhesions but not to an increase in overall cellular traction generation. The presence of the synergy site does, however, increase cells’ resistance to detachment by externally applied loads. We suggest that a substantial population of integrins experiencing loads well below their peak capacities can provide cells and tissues with mechanical integrity in the presence of widely varying mechanical loads.
doi_str_mv 10.1021/acsnano.6b03314
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5886374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835682611</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-2cf3f24c4c1c582fd1205a254387dc9debce2b6ceeacd23857f59614928ddd983</originalsourceid><addsrcrecordid>eNp1kc9rIyEcxWXZsumv894WjwtL0lFHx7kslNC0gZRC24U9VYx-J2sx2upMoP_9WpKG9tCTX_Hznk8fQt9JNSEVJWfa5KBDnIhlxRipv6BD0jIxrqT4-3U_czJCRzk_VhVvZCO-oRFtmqaVtTxED3curDzg6-jBDGWYxWTKFnQeEqwh9Bm7gBduUzg8Be8zvoUNaI81vnbBrbX3L_geQnYxgMXz0MMqFcldr3s4QQed9hlOd-sx-jO7uJ9ejRc3l_Pp-WKsa9r2Y2o61tHa1IYYLmlnCa24prxmsrGmtbA0QJfCAGhjKZO86XgrSN1Saa1tJTtGv7e-T8NyDdaU3El79ZRKvvSionbq40lw_9QqbhSXUrCmLgY_dwYpPg-Qe7V22ZTn6gBxyIpIxoWkgpCCnm1Rk2LOCbr9NaRSr62oXStq10pR_Hifbs-_1VCAX1ugKNVjHFIon_Wp3X9NQJro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835682611</pqid></control><display><type>article</type><title>Single Molecule Force Measurements in Living Cells Reveal a Minimally Tensioned Integrin State</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chang, Alice C ; Mekhdjian, Armen H ; Morimatsu, Masatoshi ; Denisin, Aleksandra Kirillovna ; Pruitt, Beth L ; Dunn, Alexander R</creator><creatorcontrib>Chang, Alice C ; Mekhdjian, Armen H ; Morimatsu, Masatoshi ; Denisin, Aleksandra Kirillovna ; Pruitt, Beth L ; Dunn, Alexander R</creatorcontrib><description>Integrins mediate cell adhesion to the extracellular matrix and enable the construction of complex, multicellular organisms, yet fundamental aspects of integrin-based adhesion remain poorly understood. Notably, the magnitude of the mechanical load experienced by individual integrins within living cells is unclear, due principally to limitations inherent to existing techniques. Here we use Förster resonance energy transfer-based molecular tension sensors to directly measure the distribution of loads experienced by individual integrins in living cells. We find that a large fraction of integrins bear modest loads of 1–3 pN, while subpopulations bearing higher loads are enriched within adhesions. Further, our data indicate that integrin engagement with the fibronectin synergy site, a secondary binding site specifically for α5β1 integrin, leads to increased levels of α5β1 integrin recruitment to adhesions but not to an increase in overall cellular traction generation. The presence of the synergy site does, however, increase cells’ resistance to detachment by externally applied loads. We suggest that a substantial population of integrins experiencing loads well below their peak capacities can provide cells and tissues with mechanical integrity in the presence of widely varying mechanical loads.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b03314</identifier><identifier>PMID: 27779848</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Adhesion ; Extracellular Matrix ; Fibronectins ; Humans ; Integrin alpha5beta1 - physiology ; Integrins - physiology ; Mechanical Phenomena</subject><ispartof>ACS nano, 2016-12, Vol.10 (12), p.10745-10752</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-2cf3f24c4c1c582fd1205a254387dc9debce2b6ceeacd23857f59614928ddd983</citedby><cites>FETCH-LOGICAL-a429t-2cf3f24c4c1c582fd1205a254387dc9debce2b6ceeacd23857f59614928ddd983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27779848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Alice C</creatorcontrib><creatorcontrib>Mekhdjian, Armen H</creatorcontrib><creatorcontrib>Morimatsu, Masatoshi</creatorcontrib><creatorcontrib>Denisin, Aleksandra Kirillovna</creatorcontrib><creatorcontrib>Pruitt, Beth L</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><title>Single Molecule Force Measurements in Living Cells Reveal a Minimally Tensioned Integrin State</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Integrins mediate cell adhesion to the extracellular matrix and enable the construction of complex, multicellular organisms, yet fundamental aspects of integrin-based adhesion remain poorly understood. Notably, the magnitude of the mechanical load experienced by individual integrins within living cells is unclear, due principally to limitations inherent to existing techniques. Here we use Förster resonance energy transfer-based molecular tension sensors to directly measure the distribution of loads experienced by individual integrins in living cells. We find that a large fraction of integrins bear modest loads of 1–3 pN, while subpopulations bearing higher loads are enriched within adhesions. Further, our data indicate that integrin engagement with the fibronectin synergy site, a secondary binding site specifically for α5β1 integrin, leads to increased levels of α5β1 integrin recruitment to adhesions but not to an increase in overall cellular traction generation. The presence of the synergy site does, however, increase cells’ resistance to detachment by externally applied loads. We suggest that a substantial population of integrins experiencing loads well below their peak capacities can provide cells and tissues with mechanical integrity in the presence of widely varying mechanical loads.</description><subject>Cell Adhesion</subject><subject>Extracellular Matrix</subject><subject>Fibronectins</subject><subject>Humans</subject><subject>Integrin alpha5beta1 - physiology</subject><subject>Integrins - physiology</subject><subject>Mechanical Phenomena</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc9rIyEcxWXZsumv894WjwtL0lFHx7kslNC0gZRC24U9VYx-J2sx2upMoP_9WpKG9tCTX_Hznk8fQt9JNSEVJWfa5KBDnIhlxRipv6BD0jIxrqT4-3U_czJCRzk_VhVvZCO-oRFtmqaVtTxED3curDzg6-jBDGWYxWTKFnQeEqwh9Bm7gBduUzg8Be8zvoUNaI81vnbBrbX3L_geQnYxgMXz0MMqFcldr3s4QQed9hlOd-sx-jO7uJ9ejRc3l_Pp-WKsa9r2Y2o61tHa1IYYLmlnCa24prxmsrGmtbA0QJfCAGhjKZO86XgrSN1Saa1tJTtGv7e-T8NyDdaU3El79ZRKvvSionbq40lw_9QqbhSXUrCmLgY_dwYpPg-Qe7V22ZTn6gBxyIpIxoWkgpCCnm1Rk2LOCbr9NaRSr62oXStq10pR_Hifbs-_1VCAX1ugKNVjHFIon_Wp3X9NQJro</recordid><startdate>20161227</startdate><enddate>20161227</enddate><creator>Chang, Alice C</creator><creator>Mekhdjian, Armen H</creator><creator>Morimatsu, Masatoshi</creator><creator>Denisin, Aleksandra Kirillovna</creator><creator>Pruitt, Beth L</creator><creator>Dunn, Alexander R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161227</creationdate><title>Single Molecule Force Measurements in Living Cells Reveal a Minimally Tensioned Integrin State</title><author>Chang, Alice C ; Mekhdjian, Armen H ; Morimatsu, Masatoshi ; Denisin, Aleksandra Kirillovna ; Pruitt, Beth L ; Dunn, Alexander R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-2cf3f24c4c1c582fd1205a254387dc9debce2b6ceeacd23857f59614928ddd983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cell Adhesion</topic><topic>Extracellular Matrix</topic><topic>Fibronectins</topic><topic>Humans</topic><topic>Integrin alpha5beta1 - physiology</topic><topic>Integrins - physiology</topic><topic>Mechanical Phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Alice C</creatorcontrib><creatorcontrib>Mekhdjian, Armen H</creatorcontrib><creatorcontrib>Morimatsu, Masatoshi</creatorcontrib><creatorcontrib>Denisin, Aleksandra Kirillovna</creatorcontrib><creatorcontrib>Pruitt, Beth L</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Alice C</au><au>Mekhdjian, Armen H</au><au>Morimatsu, Masatoshi</au><au>Denisin, Aleksandra Kirillovna</au><au>Pruitt, Beth L</au><au>Dunn, Alexander R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Molecule Force Measurements in Living Cells Reveal a Minimally Tensioned Integrin State</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-12-27</date><risdate>2016</risdate><volume>10</volume><issue>12</issue><spage>10745</spage><epage>10752</epage><pages>10745-10752</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Integrins mediate cell adhesion to the extracellular matrix and enable the construction of complex, multicellular organisms, yet fundamental aspects of integrin-based adhesion remain poorly understood. Notably, the magnitude of the mechanical load experienced by individual integrins within living cells is unclear, due principally to limitations inherent to existing techniques. Here we use Förster resonance energy transfer-based molecular tension sensors to directly measure the distribution of loads experienced by individual integrins in living cells. We find that a large fraction of integrins bear modest loads of 1–3 pN, while subpopulations bearing higher loads are enriched within adhesions. Further, our data indicate that integrin engagement with the fibronectin synergy site, a secondary binding site specifically for α5β1 integrin, leads to increased levels of α5β1 integrin recruitment to adhesions but not to an increase in overall cellular traction generation. The presence of the synergy site does, however, increase cells’ resistance to detachment by externally applied loads. We suggest that a substantial population of integrins experiencing loads well below their peak capacities can provide cells and tissues with mechanical integrity in the presence of widely varying mechanical loads.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27779848</pmid><doi>10.1021/acsnano.6b03314</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-12, Vol.10 (12), p.10745-10752
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5886374
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Cell Adhesion
Extracellular Matrix
Fibronectins
Humans
Integrin alpha5beta1 - physiology
Integrins - physiology
Mechanical Phenomena
title Single Molecule Force Measurements in Living Cells Reveal a Minimally Tensioned Integrin State
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Molecule%20Force%20Measurements%20in%20Living%20Cells%20Reveal%20a%20Minimally%20Tensioned%20Integrin%20State&rft.jtitle=ACS%20nano&rft.au=Chang,%20Alice%20C&rft.date=2016-12-27&rft.volume=10&rft.issue=12&rft.spage=10745&rft.epage=10752&rft.pages=10745-10752&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b03314&rft_dat=%3Cproquest_pubme%3E1835682611%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a429t-2cf3f24c4c1c582fd1205a254387dc9debce2b6ceeacd23857f59614928ddd983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835682611&rft_id=info:pmid/27779848&rfr_iscdi=true