Loading…
Spatially disaggregated population estimates in the absence of national population and housing census data
Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National popula...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-04, Vol.115 (14), p.3529-3537 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-e3f599fbcd055160165365231d3aa83178b5238dcf88d1d5134c3145cb4f76343 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-e3f599fbcd055160165365231d3aa83178b5238dcf88d1d5134c3145cb4f76343 |
container_end_page | 3537 |
container_issue | 14 |
container_start_page | 3529 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Wardrop, N. A. Jochem, W. C. Bird, T. J. Chamberlain, H. R. Clarke, D. Kerr, D. Bengtsson, L. Juran, S. Seaman, V. Tatem, A. J. |
description | Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National population and housing census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates of migration and urban growth make existing data quickly outdated. Here we review past and ongoing work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational power are enabling the development and application of approaches that can estimate population distributions at fine spatial scales across entire countries in the absence of census data. We outline the potential of such approaches as well as their limitations, emphasizing the political and operational hurdles for acceptance and sustainable implementation of new approaches, and the continued importance of traditional sources of national statistical data. |
doi_str_mv | 10.1073/pnas.1715305115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508381</jstor_id><sourcerecordid>26508381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-e3f599fbcd055160165365231d3aa83178b5238dcf88d1d5134c3145cb4f76343</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZpzz21CHLJxcmMZdnSpVBC0gYCPSQ5C1mSvV68kivZhfz3UbL5Pgnp_fSYN4-QbwjHCA07mbxOx9ggZ8AR-QeyQpBY1JWEj2QFUDaFqMpqj-yntAEAyQV8Jnul5Jw3TK7I5mrS86DH8ZbaIem-j67Xs7N0CtMyZil46tI8bPNjooOn89pR3SbnjaOho_4B0eNrXntL12FJg--pcT4tiVo96y_kU6fH5L4-ngfk5vzs-vRPcfn398Xpr8vCVALnwrGOS9m1xgLnWAPWnNW8ZGiZ1oJhI9p8E9Z0Qli0HFllGFbctFXX1KxiB-Tnznda2q2zeYI56lFNMYeItyroQb1V_LBWffivuBCyZiwbHD0axPBvyenVdkjGjaP2LsdSJSAXrMQSMnr4Dt2EJeZ9ZApBiCaXJDN1sqNMDClF1z0Pg6Due1T3PaqXHvOPH68zPPNPxWXg-w7YpDnEF73mIJhAdgdoXaSV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108870739</pqid></control><display><type>article</type><title>Spatially disaggregated population estimates in the absence of national population and housing census data</title><source>NCBI_PubMed Central(免费)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Wardrop, N. A. ; Jochem, W. C. ; Bird, T. J. ; Chamberlain, H. R. ; Clarke, D. ; Kerr, D. ; Bengtsson, L. ; Juran, S. ; Seaman, V. ; Tatem, A. J.</creator><creatorcontrib>Wardrop, N. A. ; Jochem, W. C. ; Bird, T. J. ; Chamberlain, H. R. ; Clarke, D. ; Kerr, D. ; Bengtsson, L. ; Juran, S. ; Seaman, V. ; Tatem, A. J.</creatorcontrib><description>Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National population and housing census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates of migration and urban growth make existing data quickly outdated. Here we review past and ongoing work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational power are enabling the development and application of approaches that can estimate population distributions at fine spatial scales across entire countries in the absence of census data. We outline the potential of such approaches as well as their limitations, emphasizing the political and operational hurdles for acceptance and sustainable implementation of new approaches, and the continued importance of traditional sources of national statistical data.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1715305115</identifier><identifier>PMID: 29555739</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Census ; Censuses ; Computer applications ; Data processing ; Demographics ; Disaster management ; Estimates ; Housing ; Migration ; New technology ; PERSPECTIVE ; Population ; Population (statistical) ; Population statistics ; Satellite imagery ; Social Sciences ; Statistical methods ; Statistics ; Urban development ; Urban sprawl</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (14), p.3529-3537</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 3, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-e3f599fbcd055160165365231d3aa83178b5238dcf88d1d5134c3145cb4f76343</citedby><cites>FETCH-LOGICAL-c481t-e3f599fbcd055160165365231d3aa83178b5238dcf88d1d5134c3145cb4f76343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508381$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508381$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29555739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wardrop, N. A.</creatorcontrib><creatorcontrib>Jochem, W. C.</creatorcontrib><creatorcontrib>Bird, T. J.</creatorcontrib><creatorcontrib>Chamberlain, H. R.</creatorcontrib><creatorcontrib>Clarke, D.</creatorcontrib><creatorcontrib>Kerr, D.</creatorcontrib><creatorcontrib>Bengtsson, L.</creatorcontrib><creatorcontrib>Juran, S.</creatorcontrib><creatorcontrib>Seaman, V.</creatorcontrib><creatorcontrib>Tatem, A. J.</creatorcontrib><title>Spatially disaggregated population estimates in the absence of national population and housing census data</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National population and housing census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates of migration and urban growth make existing data quickly outdated. Here we review past and ongoing work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational power are enabling the development and application of approaches that can estimate population distributions at fine spatial scales across entire countries in the absence of census data. We outline the potential of such approaches as well as their limitations, emphasizing the political and operational hurdles for acceptance and sustainable implementation of new approaches, and the continued importance of traditional sources of national statistical data.</description><subject>Census</subject><subject>Censuses</subject><subject>Computer applications</subject><subject>Data processing</subject><subject>Demographics</subject><subject>Disaster management</subject><subject>Estimates</subject><subject>Housing</subject><subject>Migration</subject><subject>New technology</subject><subject>PERSPECTIVE</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Population statistics</subject><subject>Satellite imagery</subject><subject>Social Sciences</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Urban development</subject><subject>Urban sprawl</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1r3DAQxUVpaTZpzz21CHLJxcmMZdnSpVBC0gYCPSQ5C1mSvV68kivZhfz3UbL5Pgnp_fSYN4-QbwjHCA07mbxOx9ggZ8AR-QeyQpBY1JWEj2QFUDaFqMpqj-yntAEAyQV8Jnul5Jw3TK7I5mrS86DH8ZbaIem-j67Xs7N0CtMyZil46tI8bPNjooOn89pR3SbnjaOho_4B0eNrXntL12FJg--pcT4tiVo96y_kU6fH5L4-ngfk5vzs-vRPcfn398Xpr8vCVALnwrGOS9m1xgLnWAPWnNW8ZGiZ1oJhI9p8E9Z0Qli0HFllGFbctFXX1KxiB-Tnznda2q2zeYI56lFNMYeItyroQb1V_LBWffivuBCyZiwbHD0axPBvyenVdkjGjaP2LsdSJSAXrMQSMnr4Dt2EJeZ9ZApBiCaXJDN1sqNMDClF1z0Pg6Due1T3PaqXHvOPH68zPPNPxWXg-w7YpDnEF73mIJhAdgdoXaSV</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Wardrop, N. A.</creator><creator>Jochem, W. C.</creator><creator>Bird, T. J.</creator><creator>Chamberlain, H. R.</creator><creator>Clarke, D.</creator><creator>Kerr, D.</creator><creator>Bengtsson, L.</creator><creator>Juran, S.</creator><creator>Seaman, V.</creator><creator>Tatem, A. J.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180403</creationdate><title>Spatially disaggregated population estimates in the absence of national population and housing census data</title><author>Wardrop, N. A. ; Jochem, W. C. ; Bird, T. J. ; Chamberlain, H. R. ; Clarke, D. ; Kerr, D. ; Bengtsson, L. ; Juran, S. ; Seaman, V. ; Tatem, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-e3f599fbcd055160165365231d3aa83178b5238dcf88d1d5134c3145cb4f76343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Census</topic><topic>Censuses</topic><topic>Computer applications</topic><topic>Data processing</topic><topic>Demographics</topic><topic>Disaster management</topic><topic>Estimates</topic><topic>Housing</topic><topic>Migration</topic><topic>New technology</topic><topic>PERSPECTIVE</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Population statistics</topic><topic>Satellite imagery</topic><topic>Social Sciences</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Urban development</topic><topic>Urban sprawl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wardrop, N. A.</creatorcontrib><creatorcontrib>Jochem, W. C.</creatorcontrib><creatorcontrib>Bird, T. J.</creatorcontrib><creatorcontrib>Chamberlain, H. R.</creatorcontrib><creatorcontrib>Clarke, D.</creatorcontrib><creatorcontrib>Kerr, D.</creatorcontrib><creatorcontrib>Bengtsson, L.</creatorcontrib><creatorcontrib>Juran, S.</creatorcontrib><creatorcontrib>Seaman, V.</creatorcontrib><creatorcontrib>Tatem, A. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wardrop, N. A.</au><au>Jochem, W. C.</au><au>Bird, T. J.</au><au>Chamberlain, H. R.</au><au>Clarke, D.</au><au>Kerr, D.</au><au>Bengtsson, L.</au><au>Juran, S.</au><au>Seaman, V.</au><au>Tatem, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially disaggregated population estimates in the absence of national population and housing census data</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-04-03</date><risdate>2018</risdate><volume>115</volume><issue>14</issue><spage>3529</spage><epage>3537</epage><pages>3529-3537</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National population and housing census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates of migration and urban growth make existing data quickly outdated. Here we review past and ongoing work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational power are enabling the development and application of approaches that can estimate population distributions at fine spatial scales across entire countries in the absence of census data. We outline the potential of such approaches as well as their limitations, emphasizing the political and operational hurdles for acceptance and sustainable implementation of new approaches, and the continued importance of traditional sources of national statistical data.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29555739</pmid><doi>10.1073/pnas.1715305115</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-04, Vol.115 (14), p.3529-3537 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889633 |
source | NCBI_PubMed Central(免费); JSTOR Archival Journals and Primary Sources Collection |
subjects | Census Censuses Computer applications Data processing Demographics Disaster management Estimates Housing Migration New technology PERSPECTIVE Population Population (statistical) Population statistics Satellite imagery Social Sciences Statistical methods Statistics Urban development Urban sprawl |
title | Spatially disaggregated population estimates in the absence of national population and housing census data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20disaggregated%20population%20estimates%20in%20the%20absence%20of%20national%20population%20and%20housing%20census%20data&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wardrop,%20N.%20A.&rft.date=2018-04-03&rft.volume=115&rft.issue=14&rft.spage=3529&rft.epage=3537&rft.pages=3529-3537&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1715305115&rft_dat=%3Cjstor_pubme%3E26508381%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-e3f599fbcd055160165365231d3aa83178b5238dcf88d1d5134c3145cb4f76343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108870739&rft_id=info:pmid/29555739&rft_jstor_id=26508381&rfr_iscdi=true |