Loading…

Deep Learning Methods for Underwater Target Feature Extraction and Recognition

The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwat...

Full description

Saved in:
Bibliographic Details
Published in:Computational intelligence and neuroscience 2018-01, Vol.2018 (2018), p.1-10
Main Authors: Kang, Baolin, Shi, Jianfei, Qiu, Mengran, Wang, Kejun, Hu, Gang, Peng, Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c499t-dc2cfe33452bd8be68fb40aa23e9fabdc89c2e2b5614ffbd576d39683ea874e03
cites cdi_FETCH-LOGICAL-c499t-dc2cfe33452bd8be68fb40aa23e9fabdc89c2e2b5614ffbd576d39683ea874e03
container_end_page 10
container_issue 2018
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2018
creator Kang, Baolin
Shi, Jianfei
Qiu, Mengran
Wang, Kejun
Hu, Gang
Peng, Yuan
description The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.
doi_str_mv 10.1155/2018/1214301
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5892262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A585448346</galeid><sourcerecordid>A585448346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-dc2cfe33452bd8be68fb40aa23e9fabdc89c2e2b5614ffbd576d39683ea874e03</originalsourceid><addsrcrecordid>eNqN0s9rFDEUB_AgFlurN88S8CLo2vycyVyEUltbWBWkPYdM8jKbMptsMzNW_3sz7LrVnjwlIR--vJcXhF5R8oFSKU8YoeqEMio4oU_QEa1UvZCs5k_3-0oeoufDcEuIrCVhz9Aha2pFBKmP0NdPABu8BJNjiB3-AuMquQH7lPFNdJDvzQgZX5vcwYgvwIxTBnz-c8zGjiFFbKLD38GmLob5_AIdeNMP8HK3HqObi_Prs8vF8tvnq7PT5cKKphkXzjLrgXMhWetUC5XyrSDGMA6NN62zqrEMWCsrKrxvnawrx5tKcTCqFkD4Mfq4zd1M7RqchVgq6vUmh7XJv3QyQf97E8NKd-mHlqphrGIl4O0uIKe7CYZRr8Ngoe9NhDQNmhHBGGeS0kLfPKK3acqxtFcU44JI0dQPqjM96BB9mt9oDtWnUkkhFBdVUe-3yuY0DBn8vmRK9DxOPY9T78ZZ-Ou_29zjP_Mr4N0WrEJ05j78ZxwUA948aMrL32j4b6pRsQs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023405497</pqid></control><display><type>article</type><title>Deep Learning Methods for Underwater Target Feature Extraction and Recognition</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Kang, Baolin ; Shi, Jianfei ; Qiu, Mengran ; Wang, Kejun ; Hu, Gang ; Peng, Yuan</creator><contributor>Köker, Raşit ; Raşit Köker</contributor><creatorcontrib>Kang, Baolin ; Shi, Jianfei ; Qiu, Mengran ; Wang, Kejun ; Hu, Gang ; Peng, Yuan ; Köker, Raşit ; Raşit Köker</creatorcontrib><description>The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2018/1214301</identifier><identifier>PMID: 29780407</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Acoustic noise ; Acoustics ; Analysis ; Automatic classification ; Classification ; Classifiers ; Convolution ; Data processing ; Deep learning ; Feature extraction ; Feature recognition ; Learning algorithms ; Machine Learning ; Methods ; Neural networks ; Neural Networks, Computer ; Object recognition (Computers) ; Pattern recognition ; Pattern Recognition, Automated - methods ; Ships ; Signal processing ; Signal Processing, Computer-Assisted ; Target recognition ; Teaching methods ; Underwater acoustics ; Voice recognition ; Water ; Wavelet transforms</subject><ispartof>Computational intelligence and neuroscience, 2018-01, Vol.2018 (2018), p.1-10</ispartof><rights>Copyright © 2018 Gang Hu et al.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2018 Gang Hu et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2018 Gang Hu et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-dc2cfe33452bd8be68fb40aa23e9fabdc89c2e2b5614ffbd576d39683ea874e03</citedby><cites>FETCH-LOGICAL-c499t-dc2cfe33452bd8be68fb40aa23e9fabdc89c2e2b5614ffbd576d39683ea874e03</cites><orcidid>0000-0003-0511-1271 ; 0000-0002-8755-8829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2023405497/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2023405497?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29780407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Köker, Raşit</contributor><contributor>Raşit Köker</contributor><creatorcontrib>Kang, Baolin</creatorcontrib><creatorcontrib>Shi, Jianfei</creatorcontrib><creatorcontrib>Qiu, Mengran</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>Peng, Yuan</creatorcontrib><title>Deep Learning Methods for Underwater Target Feature Extraction and Recognition</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Analysis</subject><subject>Automatic classification</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Convolution</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Object recognition (Computers)</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Ships</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Target recognition</subject><subject>Teaching methods</subject><subject>Underwater acoustics</subject><subject>Voice recognition</subject><subject>Water</subject><subject>Wavelet transforms</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqN0s9rFDEUB_AgFlurN88S8CLo2vycyVyEUltbWBWkPYdM8jKbMptsMzNW_3sz7LrVnjwlIR--vJcXhF5R8oFSKU8YoeqEMio4oU_QEa1UvZCs5k_3-0oeoufDcEuIrCVhz9Aha2pFBKmP0NdPABu8BJNjiB3-AuMquQH7lPFNdJDvzQgZX5vcwYgvwIxTBnz-c8zGjiFFbKLD38GmLob5_AIdeNMP8HK3HqObi_Prs8vF8tvnq7PT5cKKphkXzjLrgXMhWetUC5XyrSDGMA6NN62zqrEMWCsrKrxvnawrx5tKcTCqFkD4Mfq4zd1M7RqchVgq6vUmh7XJv3QyQf97E8NKd-mHlqphrGIl4O0uIKe7CYZRr8Ngoe9NhDQNmhHBGGeS0kLfPKK3acqxtFcU44JI0dQPqjM96BB9mt9oDtWnUkkhFBdVUe-3yuY0DBn8vmRK9DxOPY9T78ZZ-Ou_29zjP_Mr4N0WrEJ05j78ZxwUA948aMrL32j4b6pRsQs</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kang, Baolin</creator><creator>Shi, Jianfei</creator><creator>Qiu, Mengran</creator><creator>Wang, Kejun</creator><creator>Hu, Gang</creator><creator>Peng, Yuan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0511-1271</orcidid><orcidid>https://orcid.org/0000-0002-8755-8829</orcidid></search><sort><creationdate>20180101</creationdate><title>Deep Learning Methods for Underwater Target Feature Extraction and Recognition</title><author>Kang, Baolin ; Shi, Jianfei ; Qiu, Mengran ; Wang, Kejun ; Hu, Gang ; Peng, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-dc2cfe33452bd8be68fb40aa23e9fabdc89c2e2b5614ffbd576d39683ea874e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Analysis</topic><topic>Automatic classification</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Convolution</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Object recognition (Computers)</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Ships</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Target recognition</topic><topic>Teaching methods</topic><topic>Underwater acoustics</topic><topic>Voice recognition</topic><topic>Water</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Baolin</creatorcontrib><creatorcontrib>Shi, Jianfei</creatorcontrib><creatorcontrib>Qiu, Mengran</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>Peng, Yuan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Baolin</au><au>Shi, Jianfei</au><au>Qiu, Mengran</au><au>Wang, Kejun</au><au>Hu, Gang</au><au>Peng, Yuan</au><au>Köker, Raşit</au><au>Raşit Köker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Methods for Underwater Target Feature Extraction and Recognition</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29780407</pmid><doi>10.1155/2018/1214301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0511-1271</orcidid><orcidid>https://orcid.org/0000-0002-8755-8829</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2018-01, Vol.2018 (2018), p.1-10
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5892262
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Acoustic noise
Acoustics
Analysis
Automatic classification
Classification
Classifiers
Convolution
Data processing
Deep learning
Feature extraction
Feature recognition
Learning algorithms
Machine Learning
Methods
Neural networks
Neural Networks, Computer
Object recognition (Computers)
Pattern recognition
Pattern Recognition, Automated - methods
Ships
Signal processing
Signal Processing, Computer-Assisted
Target recognition
Teaching methods
Underwater acoustics
Voice recognition
Water
Wavelet transforms
title Deep Learning Methods for Underwater Target Feature Extraction and Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Methods%20for%20Underwater%20Target%20Feature%20Extraction%20and%20Recognition&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Kang,%20Baolin&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2018/1214301&rft_dat=%3Cgale_pubme%3EA585448346%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-dc2cfe33452bd8be68fb40aa23e9fabdc89c2e2b5614ffbd576d39683ea874e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023405497&rft_id=info:pmid/29780407&rft_galeid=A585448346&rfr_iscdi=true