Loading…
Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity
Hepatocellular lipid accumulation characterizes nonalcoholic fatty liver disease (NAFLD). However, the types of lipids associated with disease progression are debated, as is the impact of their localization. Traditional lipidomics analysis using liver homogenates or plasma dilutes and averages lipid...
Saved in:
Published in: | Analytical chemistry (Washington) 2018-04, Vol.90 (8), p.5130-5138 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a510t-e7664ae4f7220c02845b6a80e3c70a21959fdc6fae0ec84a4cdd3b3074197a273 |
---|---|
cites | cdi_FETCH-LOGICAL-a510t-e7664ae4f7220c02845b6a80e3c70a21959fdc6fae0ec84a4cdd3b3074197a273 |
container_end_page | 5138 |
container_issue | 8 |
container_start_page | 5130 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Ščupáková, Klára Soons, Zita Ertaylan, Gökhan Pierzchalski, Keely A Eijkel, Gert B Ellis, Shane R Greve, Jan W Driessen, Ann Verheij, Joanne De Kok, Theo M Olde Damink, Steven W. M Rensen, Sander S Heeren, Ron M. A |
description | Hepatocellular lipid accumulation characterizes nonalcoholic fatty liver disease (NAFLD). However, the types of lipids associated with disease progression are debated, as is the impact of their localization. Traditional lipidomics analysis using liver homogenates or plasma dilutes and averages lipid concentrations, and does not provide spatial information about lipid distribution. We aimed to characterize the distribution of specific lipid species related to NAFLD severity by performing label-free molecular analysis by mass spectrometry imaging (MSI). Fresh frozen liver biopsies from obese subjects undergoing bariatric surgery (n = 23) with various degrees of NAFLD were cryosectioned and analyzed by matrix-assisted laser desorption/ionization (MALDI)-MSI. Molecular identification was verified by tandem MS. Tissue sections were histopathologically stained, annotated according to the Kleiner classification, and coregistered with the MSI data set. Lipid pathway analysis was performed and linked to local proteome networks. Spatially resolved lipid profiles showed pronounced differences between nonsteatotic and steatotic tissues. Lipid identification and network analyses revealed phosphatidylinositols and arachidonic acid metabolism in nonsteatotic regions, whereas low–density lipoprotein (LDL) and very low–density lipoprotein (VLDL) metabolism was associated with steatotic tissue. Supervised and unsupervised discriminant analysis using lipid based classifiers outperformed simulated analysis of liver tissue homogenates in predicting steatosis severity. We conclude that lipid composition of steatotic and nonsteatotic tissue is highly distinct, implying that spatial context is important for understanding the mechanisms of lipid accumulation in NAFLD. MSI combined with principal component–linear discriminant analysis linking lipid and protein pathways represents a novel tool enabling detailed, comprehensive studies of the heterogeneity of NAFLD. |
doi_str_mv | 10.1021/acs.analchem.7b05215 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5906754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018025595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510t-e7664ae4f7220c02845b6a80e3c70a21959fdc6fae0ec84a4cdd3b3074197a273</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EomnhHyC0EhcuG8Zee717QUKFUqQIBIWzNfHONq5218F2IuXf4zRpBBxAc_BhvvdmPI-xFxzmHAR_gzbOccLBrmic6yUowdUjNuNKQFk3jXjMZgBQlUIDnLHzGO8AOAdeP2VnolUaWl3P2NebNSaHQ3Gzi4nGWCzc2nV-dDYW32hLOMTis9-P8Ss_OFtcYUq7TG0pFO9dJIxUXFOi4G9pIpd2z9iTPqvo-fG9YD-uPny_vC4XXz5-uny3KFFxSCXpupZIstdCgAXRSLWssQGqrAYUvFVt39m6RwKyjURpu65aVqAlbzUKXV2wtwff9WY5UmdpSgEHsw5uxLAzHp35szO5lbn1W6NaqLWS2eD10SD4nxuKyYwuWhoGnMhvohH5WJWoVK7_osAbEEq1e_TVX-id34R8wHtDyTVvBM-UPFA2-BgD9ae9OZh9vCbHax7iNcd4s-zl738-iR7yzAAcgL38NPifnr8AKrm00Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104171821</pqid></control><display><type>article</type><title>Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ščupáková, Klára ; Soons, Zita ; Ertaylan, Gökhan ; Pierzchalski, Keely A ; Eijkel, Gert B ; Ellis, Shane R ; Greve, Jan W ; Driessen, Ann ; Verheij, Joanne ; De Kok, Theo M ; Olde Damink, Steven W. M ; Rensen, Sander S ; Heeren, Ron M. A</creator><creatorcontrib>Ščupáková, Klára ; Soons, Zita ; Ertaylan, Gökhan ; Pierzchalski, Keely A ; Eijkel, Gert B ; Ellis, Shane R ; Greve, Jan W ; Driessen, Ann ; Verheij, Joanne ; De Kok, Theo M ; Olde Damink, Steven W. M ; Rensen, Sander S ; Heeren, Ron M. A</creatorcontrib><description>Hepatocellular lipid accumulation characterizes nonalcoholic fatty liver disease (NAFLD). However, the types of lipids associated with disease progression are debated, as is the impact of their localization. Traditional lipidomics analysis using liver homogenates or plasma dilutes and averages lipid concentrations, and does not provide spatial information about lipid distribution. We aimed to characterize the distribution of specific lipid species related to NAFLD severity by performing label-free molecular analysis by mass spectrometry imaging (MSI). Fresh frozen liver biopsies from obese subjects undergoing bariatric surgery (n = 23) with various degrees of NAFLD were cryosectioned and analyzed by matrix-assisted laser desorption/ionization (MALDI)-MSI. Molecular identification was verified by tandem MS. Tissue sections were histopathologically stained, annotated according to the Kleiner classification, and coregistered with the MSI data set. Lipid pathway analysis was performed and linked to local proteome networks. Spatially resolved lipid profiles showed pronounced differences between nonsteatotic and steatotic tissues. Lipid identification and network analyses revealed phosphatidylinositols and arachidonic acid metabolism in nonsteatotic regions, whereas low–density lipoprotein (LDL) and very low–density lipoprotein (VLDL) metabolism was associated with steatotic tissue. Supervised and unsupervised discriminant analysis using lipid based classifiers outperformed simulated analysis of liver tissue homogenates in predicting steatosis severity. We conclude that lipid composition of steatotic and nonsteatotic tissue is highly distinct, implying that spatial context is important for understanding the mechanisms of lipid accumulation in NAFLD. MSI combined with principal component–linear discriminant analysis linking lipid and protein pathways represents a novel tool enabling detailed, comprehensive studies of the heterogeneity of NAFLD.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b05215</identifier><identifier>PMID: 29570976</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accumulation ; Analytical chemistry ; Arachidonic acid ; Area Under Curve ; bariatric surgery ; Biopsy ; Chemistry ; data collection ; Density ; desorption ; Discriminant Analysis ; disease course ; fatty liver ; Gastrointestinal surgery ; Heterogeneity ; histopathology ; Humans ; image analysis ; Ionization ; lipid content ; Lipids ; Lipids - analysis ; Lipoproteins, LDL - metabolism ; Lipoproteins, VLDL - metabolism ; Liver ; Liver - metabolism ; Liver - pathology ; Low density lipoprotein ; Mass spectrometry ; Metabolism ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; phosphatidylinositols ; prediction ; Principal Component Analysis ; Proteins ; proteome ; Proteomes ; ROC Curve ; Severity of Illness Index ; Spatial data ; Spatial distribution ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; very low density lipoprotein</subject><ispartof>Analytical chemistry (Washington), 2018-04, Vol.90 (8), p.5130-5138</ispartof><rights>Copyright American Chemical Society Apr 17, 2018</rights><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a510t-e7664ae4f7220c02845b6a80e3c70a21959fdc6fae0ec84a4cdd3b3074197a273</citedby><cites>FETCH-LOGICAL-a510t-e7664ae4f7220c02845b6a80e3c70a21959fdc6fae0ec84a4cdd3b3074197a273</cites><orcidid>0000-0002-6533-7179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29570976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ščupáková, Klára</creatorcontrib><creatorcontrib>Soons, Zita</creatorcontrib><creatorcontrib>Ertaylan, Gökhan</creatorcontrib><creatorcontrib>Pierzchalski, Keely A</creatorcontrib><creatorcontrib>Eijkel, Gert B</creatorcontrib><creatorcontrib>Ellis, Shane R</creatorcontrib><creatorcontrib>Greve, Jan W</creatorcontrib><creatorcontrib>Driessen, Ann</creatorcontrib><creatorcontrib>Verheij, Joanne</creatorcontrib><creatorcontrib>De Kok, Theo M</creatorcontrib><creatorcontrib>Olde Damink, Steven W. M</creatorcontrib><creatorcontrib>Rensen, Sander S</creatorcontrib><creatorcontrib>Heeren, Ron M. A</creatorcontrib><title>Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Hepatocellular lipid accumulation characterizes nonalcoholic fatty liver disease (NAFLD). However, the types of lipids associated with disease progression are debated, as is the impact of their localization. Traditional lipidomics analysis using liver homogenates or plasma dilutes and averages lipid concentrations, and does not provide spatial information about lipid distribution. We aimed to characterize the distribution of specific lipid species related to NAFLD severity by performing label-free molecular analysis by mass spectrometry imaging (MSI). Fresh frozen liver biopsies from obese subjects undergoing bariatric surgery (n = 23) with various degrees of NAFLD were cryosectioned and analyzed by matrix-assisted laser desorption/ionization (MALDI)-MSI. Molecular identification was verified by tandem MS. Tissue sections were histopathologically stained, annotated according to the Kleiner classification, and coregistered with the MSI data set. Lipid pathway analysis was performed and linked to local proteome networks. Spatially resolved lipid profiles showed pronounced differences between nonsteatotic and steatotic tissues. Lipid identification and network analyses revealed phosphatidylinositols and arachidonic acid metabolism in nonsteatotic regions, whereas low–density lipoprotein (LDL) and very low–density lipoprotein (VLDL) metabolism was associated with steatotic tissue. Supervised and unsupervised discriminant analysis using lipid based classifiers outperformed simulated analysis of liver tissue homogenates in predicting steatosis severity. We conclude that lipid composition of steatotic and nonsteatotic tissue is highly distinct, implying that spatial context is important for understanding the mechanisms of lipid accumulation in NAFLD. MSI combined with principal component–linear discriminant analysis linking lipid and protein pathways represents a novel tool enabling detailed, comprehensive studies of the heterogeneity of NAFLD.</description><subject>Accumulation</subject><subject>Analytical chemistry</subject><subject>Arachidonic acid</subject><subject>Area Under Curve</subject><subject>bariatric surgery</subject><subject>Biopsy</subject><subject>Chemistry</subject><subject>data collection</subject><subject>Density</subject><subject>desorption</subject><subject>Discriminant Analysis</subject><subject>disease course</subject><subject>fatty liver</subject><subject>Gastrointestinal surgery</subject><subject>Heterogeneity</subject><subject>histopathology</subject><subject>Humans</subject><subject>image analysis</subject><subject>Ionization</subject><subject>lipid content</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Lipoproteins, LDL - metabolism</subject><subject>Lipoproteins, VLDL - metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Low density lipoprotein</subject><subject>Mass spectrometry</subject><subject>Metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>phosphatidylinositols</subject><subject>prediction</subject><subject>Principal Component Analysis</subject><subject>Proteins</subject><subject>proteome</subject><subject>Proteomes</subject><subject>ROC Curve</subject><subject>Severity of Illness Index</subject><subject>Spatial data</subject><subject>Spatial distribution</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>very low density lipoprotein</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQhS0EomnhHyC0EhcuG8Zee717QUKFUqQIBIWzNfHONq5218F2IuXf4zRpBBxAc_BhvvdmPI-xFxzmHAR_gzbOccLBrmic6yUowdUjNuNKQFk3jXjMZgBQlUIDnLHzGO8AOAdeP2VnolUaWl3P2NebNSaHQ3Gzi4nGWCzc2nV-dDYW32hLOMTis9-P8Ss_OFtcYUq7TG0pFO9dJIxUXFOi4G9pIpd2z9iTPqvo-fG9YD-uPny_vC4XXz5-uny3KFFxSCXpupZIstdCgAXRSLWssQGqrAYUvFVt39m6RwKyjURpu65aVqAlbzUKXV2wtwff9WY5UmdpSgEHsw5uxLAzHp35szO5lbn1W6NaqLWS2eD10SD4nxuKyYwuWhoGnMhvohH5WJWoVK7_osAbEEq1e_TVX-id34R8wHtDyTVvBM-UPFA2-BgD9ae9OZh9vCbHax7iNcd4s-zl738-iR7yzAAcgL38NPifnr8AKrm00Q</recordid><startdate>20180417</startdate><enddate>20180417</enddate><creator>Ščupáková, Klára</creator><creator>Soons, Zita</creator><creator>Ertaylan, Gökhan</creator><creator>Pierzchalski, Keely A</creator><creator>Eijkel, Gert B</creator><creator>Ellis, Shane R</creator><creator>Greve, Jan W</creator><creator>Driessen, Ann</creator><creator>Verheij, Joanne</creator><creator>De Kok, Theo M</creator><creator>Olde Damink, Steven W. M</creator><creator>Rensen, Sander S</creator><creator>Heeren, Ron M. A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6533-7179</orcidid></search><sort><creationdate>20180417</creationdate><title>Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity</title><author>Ščupáková, Klára ; Soons, Zita ; Ertaylan, Gökhan ; Pierzchalski, Keely A ; Eijkel, Gert B ; Ellis, Shane R ; Greve, Jan W ; Driessen, Ann ; Verheij, Joanne ; De Kok, Theo M ; Olde Damink, Steven W. M ; Rensen, Sander S ; Heeren, Ron M. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510t-e7664ae4f7220c02845b6a80e3c70a21959fdc6fae0ec84a4cdd3b3074197a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Analytical chemistry</topic><topic>Arachidonic acid</topic><topic>Area Under Curve</topic><topic>bariatric surgery</topic><topic>Biopsy</topic><topic>Chemistry</topic><topic>data collection</topic><topic>Density</topic><topic>desorption</topic><topic>Discriminant Analysis</topic><topic>disease course</topic><topic>fatty liver</topic><topic>Gastrointestinal surgery</topic><topic>Heterogeneity</topic><topic>histopathology</topic><topic>Humans</topic><topic>image analysis</topic><topic>Ionization</topic><topic>lipid content</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Lipoproteins, LDL - metabolism</topic><topic>Lipoproteins, VLDL - metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Low density lipoprotein</topic><topic>Mass spectrometry</topic><topic>Metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>phosphatidylinositols</topic><topic>prediction</topic><topic>Principal Component Analysis</topic><topic>Proteins</topic><topic>proteome</topic><topic>Proteomes</topic><topic>ROC Curve</topic><topic>Severity of Illness Index</topic><topic>Spatial data</topic><topic>Spatial distribution</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>very low density lipoprotein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ščupáková, Klára</creatorcontrib><creatorcontrib>Soons, Zita</creatorcontrib><creatorcontrib>Ertaylan, Gökhan</creatorcontrib><creatorcontrib>Pierzchalski, Keely A</creatorcontrib><creatorcontrib>Eijkel, Gert B</creatorcontrib><creatorcontrib>Ellis, Shane R</creatorcontrib><creatorcontrib>Greve, Jan W</creatorcontrib><creatorcontrib>Driessen, Ann</creatorcontrib><creatorcontrib>Verheij, Joanne</creatorcontrib><creatorcontrib>De Kok, Theo M</creatorcontrib><creatorcontrib>Olde Damink, Steven W. M</creatorcontrib><creatorcontrib>Rensen, Sander S</creatorcontrib><creatorcontrib>Heeren, Ron M. A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ščupáková, Klára</au><au>Soons, Zita</au><au>Ertaylan, Gökhan</au><au>Pierzchalski, Keely A</au><au>Eijkel, Gert B</au><au>Ellis, Shane R</au><au>Greve, Jan W</au><au>Driessen, Ann</au><au>Verheij, Joanne</au><au>De Kok, Theo M</au><au>Olde Damink, Steven W. M</au><au>Rensen, Sander S</au><au>Heeren, Ron M. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-04-17</date><risdate>2018</risdate><volume>90</volume><issue>8</issue><spage>5130</spage><epage>5138</epage><pages>5130-5138</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Hepatocellular lipid accumulation characterizes nonalcoholic fatty liver disease (NAFLD). However, the types of lipids associated with disease progression are debated, as is the impact of their localization. Traditional lipidomics analysis using liver homogenates or plasma dilutes and averages lipid concentrations, and does not provide spatial information about lipid distribution. We aimed to characterize the distribution of specific lipid species related to NAFLD severity by performing label-free molecular analysis by mass spectrometry imaging (MSI). Fresh frozen liver biopsies from obese subjects undergoing bariatric surgery (n = 23) with various degrees of NAFLD were cryosectioned and analyzed by matrix-assisted laser desorption/ionization (MALDI)-MSI. Molecular identification was verified by tandem MS. Tissue sections were histopathologically stained, annotated according to the Kleiner classification, and coregistered with the MSI data set. Lipid pathway analysis was performed and linked to local proteome networks. Spatially resolved lipid profiles showed pronounced differences between nonsteatotic and steatotic tissues. Lipid identification and network analyses revealed phosphatidylinositols and arachidonic acid metabolism in nonsteatotic regions, whereas low–density lipoprotein (LDL) and very low–density lipoprotein (VLDL) metabolism was associated with steatotic tissue. Supervised and unsupervised discriminant analysis using lipid based classifiers outperformed simulated analysis of liver tissue homogenates in predicting steatosis severity. We conclude that lipid composition of steatotic and nonsteatotic tissue is highly distinct, implying that spatial context is important for understanding the mechanisms of lipid accumulation in NAFLD. MSI combined with principal component–linear discriminant analysis linking lipid and protein pathways represents a novel tool enabling detailed, comprehensive studies of the heterogeneity of NAFLD.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29570976</pmid><doi>10.1021/acs.analchem.7b05215</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6533-7179</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-04, Vol.90 (8), p.5130-5138 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5906754 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Accumulation Analytical chemistry Arachidonic acid Area Under Curve bariatric surgery Biopsy Chemistry data collection Density desorption Discriminant Analysis disease course fatty liver Gastrointestinal surgery Heterogeneity histopathology Humans image analysis Ionization lipid content Lipids Lipids - analysis Lipoproteins, LDL - metabolism Lipoproteins, VLDL - metabolism Liver Liver - metabolism Liver - pathology Low density lipoprotein Mass spectrometry Metabolism Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology phosphatidylinositols prediction Principal Component Analysis Proteins proteome Proteomes ROC Curve Severity of Illness Index Spatial data Spatial distribution Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods very low density lipoprotein |
title | Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Systems%20Lipidomics%20Reveals%20Nonalcoholic%20Fatty%20Liver%20Disease%20Heterogeneity&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=S%CC%8Cc%CC%8Cupa%CC%81kova%CC%81,%20Kla%CC%81ra&rft.date=2018-04-17&rft.volume=90&rft.issue=8&rft.spage=5130&rft.epage=5138&rft.pages=5130-5138&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b05215&rft_dat=%3Cproquest_pubme%3E2018025595%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510t-e7664ae4f7220c02845b6a80e3c70a21959fdc6fae0ec84a4cdd3b3074197a273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2104171821&rft_id=info:pmid/29570976&rfr_iscdi=true |