Loading…

Quantitative optical mapping of two-dimensional materials

The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image featur...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-04, Vol.8 (1), p.6381-8, Article 6381
Main Authors: Jessen, Bjarke S., Whelan, Patrick R., Mackenzie, David M. A., Luo, Birong, Thomsen, Joachim D., Gammelgaard, Lene, Booth, Timothy J., Bøggild, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-2b3db0847d7773741d1e31831909719d7070bed133837a31ebb9b571c43d81bb3
cites cdi_FETCH-LOGICAL-c474t-2b3db0847d7773741d1e31831909719d7070bed133837a31ebb9b571c43d81bb3
container_end_page 8
container_issue 1
container_start_page 6381
container_title Scientific reports
container_volume 8
creator Jessen, Bjarke S.
Whelan, Patrick R.
Mackenzie, David M. A.
Luo, Birong
Thomsen, Joachim D.
Gammelgaard, Lene
Booth, Timothy J.
Bøggild, Peter
description The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image features with similar contrast, efforts towards fast and reliable automated assignments schemes is essential. We show that by modelling the expected 2DM contrast in digitally captured images, we can automatically identify candidate regions of 2DM. More importantly, we show a computationally-light machine vision strategy for eliminating false-positives from this set of 2DM candidates through the combined use of binary thresholding, opening and closing filters, and shape-analysis from edge detection. Calculation of data pyramids for arbitrarily high-resolution optical coverage maps of two-dimensional materials produced in this way allows the real-time presentation and processing of this image data in a zoomable interface, enabling large datasets to be explored and analysed with ease. The result is that a standard optical microscope with CCD camera can be used as an analysis tool able to accurately determine the coverage, residue/contamination concentration, and layer number for a wide range of presented 2DMs.
doi_str_mv 10.1038/s41598-018-23922-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5913130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2029580825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2b3db0847d7773741d1e31831909719d7070bed133837a31ebb9b571c43d81bb3</originalsourceid><addsrcrecordid>eNp9kcFPHCEUxknTpm7s_gM9mE289DKVx2MELiaNUdvExDTRM4EZdmUzM4zArPG_F127XXsolwf5fu-Dx0fIV6DfgaI8SRxqJSsKsmKoGKvgA5kxyutyZOzj3v6AzFNa07Jqpjioz-SAqVN5yoHOiPo9mSH7bLLfuEUYs29Mt-jNOPphtQjLRX4MVet7NyQfhlcpu-hNl76QT8tS3PytHpK7y4vb85_V9c3Vr_Mf11XDBc8Vs9haKrlohRAoOLTgECSCokqAagUV1LoWECUKg-CsVbYW0HBsJViLh-Rs6ztOtndt44YcTafH6HsTn3QwXr9XBn-vV2GjawUISIvBtzeDGB4ml7LufWpc15nBhSlpRrH8KHLOC3r8D7oOUyxjv1BM1ZJKVheKbakmhpSiW-4eA1S_hKO34egSjn4NR0NpOtofY9fyJ4oC4BZIRRpWLv69-z-2z6XGmTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029580825</pqid></control><display><type>article</type><title>Quantitative optical mapping of two-dimensional materials</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jessen, Bjarke S. ; Whelan, Patrick R. ; Mackenzie, David M. A. ; Luo, Birong ; Thomsen, Joachim D. ; Gammelgaard, Lene ; Booth, Timothy J. ; Bøggild, Peter</creator><creatorcontrib>Jessen, Bjarke S. ; Whelan, Patrick R. ; Mackenzie, David M. A. ; Luo, Birong ; Thomsen, Joachim D. ; Gammelgaard, Lene ; Booth, Timothy J. ; Bøggild, Peter</creatorcontrib><description>The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image features with similar contrast, efforts towards fast and reliable automated assignments schemes is essential. We show that by modelling the expected 2DM contrast in digitally captured images, we can automatically identify candidate regions of 2DM. More importantly, we show a computationally-light machine vision strategy for eliminating false-positives from this set of 2DM candidates through the combined use of binary thresholding, opening and closing filters, and shape-analysis from edge detection. Calculation of data pyramids for arbitrarily high-resolution optical coverage maps of two-dimensional materials produced in this way allows the real-time presentation and processing of this image data in a zoomable interface, enabling large datasets to be explored and analysed with ease. The result is that a standard optical microscope with CCD camera can be used as an analysis tool able to accurately determine the coverage, residue/contamination concentration, and layer number for a wide range of presented 2DMs.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-23922-1</identifier><identifier>PMID: 29686410</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/930/12 ; 639/705/1042 ; Automation ; Cameras ; Contamination ; Data processing ; Graphene ; Humanities and Social Sciences ; Light ; Microscopy ; multidisciplinary ; Quality control ; Science ; Science (multidisciplinary) ; Sensors ; Spectrum analysis ; Vision systems</subject><ispartof>Scientific reports, 2018-04, Vol.8 (1), p.6381-8, Article 6381</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2b3db0847d7773741d1e31831909719d7070bed133837a31ebb9b571c43d81bb3</citedby><cites>FETCH-LOGICAL-c474t-2b3db0847d7773741d1e31831909719d7070bed133837a31ebb9b571c43d81bb3</cites><orcidid>0000-0002-3978-7029 ; 0000-0002-9784-989X ; 0000-0002-4342-0449 ; 0000-0003-1114-2955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2029580825/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2029580825?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29686410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jessen, Bjarke S.</creatorcontrib><creatorcontrib>Whelan, Patrick R.</creatorcontrib><creatorcontrib>Mackenzie, David M. A.</creatorcontrib><creatorcontrib>Luo, Birong</creatorcontrib><creatorcontrib>Thomsen, Joachim D.</creatorcontrib><creatorcontrib>Gammelgaard, Lene</creatorcontrib><creatorcontrib>Booth, Timothy J.</creatorcontrib><creatorcontrib>Bøggild, Peter</creatorcontrib><title>Quantitative optical mapping of two-dimensional materials</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image features with similar contrast, efforts towards fast and reliable automated assignments schemes is essential. We show that by modelling the expected 2DM contrast in digitally captured images, we can automatically identify candidate regions of 2DM. More importantly, we show a computationally-light machine vision strategy for eliminating false-positives from this set of 2DM candidates through the combined use of binary thresholding, opening and closing filters, and shape-analysis from edge detection. Calculation of data pyramids for arbitrarily high-resolution optical coverage maps of two-dimensional materials produced in this way allows the real-time presentation and processing of this image data in a zoomable interface, enabling large datasets to be explored and analysed with ease. The result is that a standard optical microscope with CCD camera can be used as an analysis tool able to accurately determine the coverage, residue/contamination concentration, and layer number for a wide range of presented 2DMs.</description><subject>639/301/930/12</subject><subject>639/705/1042</subject><subject>Automation</subject><subject>Cameras</subject><subject>Contamination</subject><subject>Data processing</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Light</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Quality control</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Vision systems</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kcFPHCEUxknTpm7s_gM9mE289DKVx2MELiaNUdvExDTRM4EZdmUzM4zArPG_F127XXsolwf5fu-Dx0fIV6DfgaI8SRxqJSsKsmKoGKvgA5kxyutyZOzj3v6AzFNa07Jqpjioz-SAqVN5yoHOiPo9mSH7bLLfuEUYs29Mt-jNOPphtQjLRX4MVet7NyQfhlcpu-hNl76QT8tS3PytHpK7y4vb85_V9c3Vr_Mf11XDBc8Vs9haKrlohRAoOLTgECSCokqAagUV1LoWECUKg-CsVbYW0HBsJViLh-Rs6ztOtndt44YcTafH6HsTn3QwXr9XBn-vV2GjawUISIvBtzeDGB4ml7LufWpc15nBhSlpRrH8KHLOC3r8D7oOUyxjv1BM1ZJKVheKbakmhpSiW-4eA1S_hKO34egSjn4NR0NpOtofY9fyJ4oC4BZIRRpWLv69-z-2z6XGmTM</recordid><startdate>20180423</startdate><enddate>20180423</enddate><creator>Jessen, Bjarke S.</creator><creator>Whelan, Patrick R.</creator><creator>Mackenzie, David M. A.</creator><creator>Luo, Birong</creator><creator>Thomsen, Joachim D.</creator><creator>Gammelgaard, Lene</creator><creator>Booth, Timothy J.</creator><creator>Bøggild, Peter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3978-7029</orcidid><orcidid>https://orcid.org/0000-0002-9784-989X</orcidid><orcidid>https://orcid.org/0000-0002-4342-0449</orcidid><orcidid>https://orcid.org/0000-0003-1114-2955</orcidid></search><sort><creationdate>20180423</creationdate><title>Quantitative optical mapping of two-dimensional materials</title><author>Jessen, Bjarke S. ; Whelan, Patrick R. ; Mackenzie, David M. A. ; Luo, Birong ; Thomsen, Joachim D. ; Gammelgaard, Lene ; Booth, Timothy J. ; Bøggild, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2b3db0847d7773741d1e31831909719d7070bed133837a31ebb9b571c43d81bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/930/12</topic><topic>639/705/1042</topic><topic>Automation</topic><topic>Cameras</topic><topic>Contamination</topic><topic>Data processing</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Light</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Quality control</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jessen, Bjarke S.</creatorcontrib><creatorcontrib>Whelan, Patrick R.</creatorcontrib><creatorcontrib>Mackenzie, David M. A.</creatorcontrib><creatorcontrib>Luo, Birong</creatorcontrib><creatorcontrib>Thomsen, Joachim D.</creatorcontrib><creatorcontrib>Gammelgaard, Lene</creatorcontrib><creatorcontrib>Booth, Timothy J.</creatorcontrib><creatorcontrib>Bøggild, Peter</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jessen, Bjarke S.</au><au>Whelan, Patrick R.</au><au>Mackenzie, David M. A.</au><au>Luo, Birong</au><au>Thomsen, Joachim D.</au><au>Gammelgaard, Lene</au><au>Booth, Timothy J.</au><au>Bøggild, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative optical mapping of two-dimensional materials</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-04-23</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>6381</spage><epage>8</epage><pages>6381-8</pages><artnum>6381</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image features with similar contrast, efforts towards fast and reliable automated assignments schemes is essential. We show that by modelling the expected 2DM contrast in digitally captured images, we can automatically identify candidate regions of 2DM. More importantly, we show a computationally-light machine vision strategy for eliminating false-positives from this set of 2DM candidates through the combined use of binary thresholding, opening and closing filters, and shape-analysis from edge detection. Calculation of data pyramids for arbitrarily high-resolution optical coverage maps of two-dimensional materials produced in this way allows the real-time presentation and processing of this image data in a zoomable interface, enabling large datasets to be explored and analysed with ease. The result is that a standard optical microscope with CCD camera can be used as an analysis tool able to accurately determine the coverage, residue/contamination concentration, and layer number for a wide range of presented 2DMs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29686410</pmid><doi>10.1038/s41598-018-23922-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3978-7029</orcidid><orcidid>https://orcid.org/0000-0002-9784-989X</orcidid><orcidid>https://orcid.org/0000-0002-4342-0449</orcidid><orcidid>https://orcid.org/0000-0003-1114-2955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-04, Vol.8 (1), p.6381-8, Article 6381
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5913130
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/930/12
639/705/1042
Automation
Cameras
Contamination
Data processing
Graphene
Humanities and Social Sciences
Light
Microscopy
multidisciplinary
Quality control
Science
Science (multidisciplinary)
Sensors
Spectrum analysis
Vision systems
title Quantitative optical mapping of two-dimensional materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20optical%20mapping%20of%20two-dimensional%20materials&rft.jtitle=Scientific%20reports&rft.au=Jessen,%20Bjarke%20S.&rft.date=2018-04-23&rft.volume=8&rft.issue=1&rft.spage=6381&rft.epage=8&rft.pages=6381-8&rft.artnum=6381&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-23922-1&rft_dat=%3Cproquest_pubme%3E2029580825%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-2b3db0847d7773741d1e31831909719d7070bed133837a31ebb9b571c43d81bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2029580825&rft_id=info:pmid/29686410&rfr_iscdi=true