Loading…

Impact of dietary gut microbial metabolites on the epigenome

Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to targe...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2018-06, Vol.373 (1748), p.20170359-20170359
Main Author: Gerhauser, Clarissa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063
cites cdi_FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063
container_end_page 20170359
container_issue 1748
container_start_page 20170359
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 373
creator Gerhauser, Clarissa
description Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet–epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(−)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.
doi_str_mv 10.1098/rstb.2017.0359
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5915727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2028833338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoMo9li99VIWvPFmj5NkNx8gghY_CgVB63VIsslp6u5mTXYLx19v1lOrLWggBGaeeWcmL0JPMWwxSPEy5dlsCWC-BdrKe2iDG45rIjncRxuQjNSioewIPcr5EgBky5uH6IhIJtpyN-jV6TBpO1fRV11ws077arfM1RBsiibovhpK0MQ-zC5XcazmC1e5KezcGAf3GD3wus_uyfV7jL6-f3d-8rE--_Th9OTNWW0ZEXPNG2-7jkrescZQKT1j1lsM3ntnTGu1kxhcR8FYR4Qpo3HBKDQavLEGGD1Grw-602IG11k3zkn3akphKAOrqIO6nRnDhdrFK9VK3HLCi8CLa4EUvy8uz2oI2bq-16OLS1YEKAbSMr6iz--gl3FJY1mvUEQIWo4o1PZAlW_KOTl_MwwGtRqjVmPUaoxajSkFz_5e4Qb_7UQB6AFIcV-aRVvc2P_p_U_Zb_-r-vzl_O0V5TRg3ggFomzJicBU_QjTQaokVch5ceoXclv-brefcPK_aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028833338</pqid></control><display><type>article</type><title>Impact of dietary gut microbial metabolites on the epigenome</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central (PMC)</source><creator>Gerhauser, Clarissa</creator><creatorcontrib>Gerhauser, Clarissa</creatorcontrib><description>Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet–epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(−)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2017.0359</identifier><identifier>PMID: 29685968</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animal models ; Berries ; Bioactive compounds ; Bioavailability ; Cell culture ; Deoxyribonucleic acid ; Diet ; DNA ; Epigenesis, Genetic ; Epigenetics ; Epigenomics ; Fatty acids ; Folic acid ; Fruits ; Gastrointestinal Microbiome - physiology ; Gene expression ; Gene regulation ; Grain ; Green tea ; Gut Microbiota ; Human Health ; Humans ; In vivo methods and tests ; Intestinal microflora ; Metabolism ; Metabolites ; Metagenome - physiology ; Microbiomes ; Microbiota ; Microorganisms ; miRNA ; Natural products ; Phenolic acids ; Phenols ; Review ; Vegetables</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2018-06, Vol.373 (1748), p.20170359-20170359</ispartof><rights>2018 The Authors.</rights><rights>Copyright The Royal Society Publishing Jun 5, 2018</rights><rights>2018 The Authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063</citedby><cites>FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063</cites><orcidid>0000-0002-5792-3901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915727/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915727/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29685968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerhauser, Clarissa</creatorcontrib><title>Impact of dietary gut microbial metabolites on the epigenome</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet–epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(−)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.</description><subject>Animal models</subject><subject>Berries</subject><subject>Bioactive compounds</subject><subject>Bioavailability</subject><subject>Cell culture</subject><subject>Deoxyribonucleic acid</subject><subject>Diet</subject><subject>DNA</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Epigenomics</subject><subject>Fatty acids</subject><subject>Folic acid</subject><subject>Fruits</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Grain</subject><subject>Green tea</subject><subject>Gut Microbiota</subject><subject>Human Health</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Intestinal microflora</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metagenome - physiology</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>miRNA</subject><subject>Natural products</subject><subject>Phenolic acids</subject><subject>Phenols</subject><subject>Review</subject><subject>Vegetables</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFTEQhoMo9li99VIWvPFmj5NkNx8gghY_CgVB63VIsslp6u5mTXYLx19v1lOrLWggBGaeeWcmL0JPMWwxSPEy5dlsCWC-BdrKe2iDG45rIjncRxuQjNSioewIPcr5EgBky5uH6IhIJtpyN-jV6TBpO1fRV11ws077arfM1RBsiibovhpK0MQ-zC5XcazmC1e5KezcGAf3GD3wus_uyfV7jL6-f3d-8rE--_Th9OTNWW0ZEXPNG2-7jkrescZQKT1j1lsM3ntnTGu1kxhcR8FYR4Qpo3HBKDQavLEGGD1Grw-602IG11k3zkn3akphKAOrqIO6nRnDhdrFK9VK3HLCi8CLa4EUvy8uz2oI2bq-16OLS1YEKAbSMr6iz--gl3FJY1mvUEQIWo4o1PZAlW_KOTl_MwwGtRqjVmPUaoxajSkFz_5e4Qb_7UQB6AFIcV-aRVvc2P_p_U_Zb_-r-vzl_O0V5TRg3ggFomzJicBU_QjTQaokVch5ceoXclv-brefcPK_aw</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Gerhauser, Clarissa</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5792-3901</orcidid></search><sort><creationdate>20180605</creationdate><title>Impact of dietary gut microbial metabolites on the epigenome</title><author>Gerhauser, Clarissa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal models</topic><topic>Berries</topic><topic>Bioactive compounds</topic><topic>Bioavailability</topic><topic>Cell culture</topic><topic>Deoxyribonucleic acid</topic><topic>Diet</topic><topic>DNA</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Epigenomics</topic><topic>Fatty acids</topic><topic>Folic acid</topic><topic>Fruits</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Grain</topic><topic>Green tea</topic><topic>Gut Microbiota</topic><topic>Human Health</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Intestinal microflora</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metagenome - physiology</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>miRNA</topic><topic>Natural products</topic><topic>Phenolic acids</topic><topic>Phenols</topic><topic>Review</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerhauser, Clarissa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerhauser, Clarissa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of dietary gut microbial metabolites on the epigenome</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2018-06-05</date><risdate>2018</risdate><volume>373</volume><issue>1748</issue><spage>20170359</spage><epage>20170359</epage><pages>20170359-20170359</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet–epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(−)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>29685968</pmid><doi>10.1098/rstb.2017.0359</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5792-3901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2018-06, Vol.373 (1748), p.20170359-20170359
issn 0962-8436
1471-2970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5915727
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central (PMC)
subjects Animal models
Berries
Bioactive compounds
Bioavailability
Cell culture
Deoxyribonucleic acid
Diet
DNA
Epigenesis, Genetic
Epigenetics
Epigenomics
Fatty acids
Folic acid
Fruits
Gastrointestinal Microbiome - physiology
Gene expression
Gene regulation
Grain
Green tea
Gut Microbiota
Human Health
Humans
In vivo methods and tests
Intestinal microflora
Metabolism
Metabolites
Metagenome - physiology
Microbiomes
Microbiota
Microorganisms
miRNA
Natural products
Phenolic acids
Phenols
Review
Vegetables
title Impact of dietary gut microbial metabolites on the epigenome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20dietary%20gut%20microbial%20metabolites%20on%20the%20epigenome&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Gerhauser,%20Clarissa&rft.date=2018-06-05&rft.volume=373&rft.issue=1748&rft.spage=20170359&rft.epage=20170359&rft.pages=20170359-20170359&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2017.0359&rft_dat=%3Cproquest_pubme%3E2028833338%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2028833338&rft_id=info:pmid/29685968&rfr_iscdi=true