Loading…
Impact of dietary gut microbial metabolites on the epigenome
Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to targe...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2018-06, Vol.373 (1748), p.20170359-20170359 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063 |
---|---|
cites | cdi_FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063 |
container_end_page | 20170359 |
container_issue | 1748 |
container_start_page | 20170359 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 373 |
creator | Gerhauser, Clarissa |
description | Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet–epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(−)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for.
This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’. |
doi_str_mv | 10.1098/rstb.2017.0359 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5915727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2028833338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoMo9li99VIWvPFmj5NkNx8gghY_CgVB63VIsslp6u5mTXYLx19v1lOrLWggBGaeeWcmL0JPMWwxSPEy5dlsCWC-BdrKe2iDG45rIjncRxuQjNSioewIPcr5EgBky5uH6IhIJtpyN-jV6TBpO1fRV11ws077arfM1RBsiibovhpK0MQ-zC5XcazmC1e5KezcGAf3GD3wus_uyfV7jL6-f3d-8rE--_Th9OTNWW0ZEXPNG2-7jkrescZQKT1j1lsM3ntnTGu1kxhcR8FYR4Qpo3HBKDQavLEGGD1Grw-602IG11k3zkn3akphKAOrqIO6nRnDhdrFK9VK3HLCi8CLa4EUvy8uz2oI2bq-16OLS1YEKAbSMr6iz--gl3FJY1mvUEQIWo4o1PZAlW_KOTl_MwwGtRqjVmPUaoxajSkFz_5e4Qb_7UQB6AFIcV-aRVvc2P_p_U_Zb_-r-vzl_O0V5TRg3ggFomzJicBU_QjTQaokVch5ceoXclv-brefcPK_aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028833338</pqid></control><display><type>article</type><title>Impact of dietary gut microbial metabolites on the epigenome</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central (PMC)</source><creator>Gerhauser, Clarissa</creator><creatorcontrib>Gerhauser, Clarissa</creatorcontrib><description>Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet–epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(−)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for.
This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2017.0359</identifier><identifier>PMID: 29685968</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animal models ; Berries ; Bioactive compounds ; Bioavailability ; Cell culture ; Deoxyribonucleic acid ; Diet ; DNA ; Epigenesis, Genetic ; Epigenetics ; Epigenomics ; Fatty acids ; Folic acid ; Fruits ; Gastrointestinal Microbiome - physiology ; Gene expression ; Gene regulation ; Grain ; Green tea ; Gut Microbiota ; Human Health ; Humans ; In vivo methods and tests ; Intestinal microflora ; Metabolism ; Metabolites ; Metagenome - physiology ; Microbiomes ; Microbiota ; Microorganisms ; miRNA ; Natural products ; Phenolic acids ; Phenols ; Review ; Vegetables</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2018-06, Vol.373 (1748), p.20170359-20170359</ispartof><rights>2018 The Authors.</rights><rights>Copyright The Royal Society Publishing Jun 5, 2018</rights><rights>2018 The Authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063</citedby><cites>FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063</cites><orcidid>0000-0002-5792-3901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915727/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915727/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29685968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerhauser, Clarissa</creatorcontrib><title>Impact of dietary gut microbial metabolites on the epigenome</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet–epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(−)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for.
This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.</description><subject>Animal models</subject><subject>Berries</subject><subject>Bioactive compounds</subject><subject>Bioavailability</subject><subject>Cell culture</subject><subject>Deoxyribonucleic acid</subject><subject>Diet</subject><subject>DNA</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Epigenomics</subject><subject>Fatty acids</subject><subject>Folic acid</subject><subject>Fruits</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Grain</subject><subject>Green tea</subject><subject>Gut Microbiota</subject><subject>Human Health</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Intestinal microflora</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metagenome - physiology</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>miRNA</subject><subject>Natural products</subject><subject>Phenolic acids</subject><subject>Phenols</subject><subject>Review</subject><subject>Vegetables</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFTEQhoMo9li99VIWvPFmj5NkNx8gghY_CgVB63VIsslp6u5mTXYLx19v1lOrLWggBGaeeWcmL0JPMWwxSPEy5dlsCWC-BdrKe2iDG45rIjncRxuQjNSioewIPcr5EgBky5uH6IhIJtpyN-jV6TBpO1fRV11ws077arfM1RBsiibovhpK0MQ-zC5XcazmC1e5KezcGAf3GD3wus_uyfV7jL6-f3d-8rE--_Th9OTNWW0ZEXPNG2-7jkrescZQKT1j1lsM3ntnTGu1kxhcR8FYR4Qpo3HBKDQavLEGGD1Grw-602IG11k3zkn3akphKAOrqIO6nRnDhdrFK9VK3HLCi8CLa4EUvy8uz2oI2bq-16OLS1YEKAbSMr6iz--gl3FJY1mvUEQIWo4o1PZAlW_KOTl_MwwGtRqjVmPUaoxajSkFz_5e4Qb_7UQB6AFIcV-aRVvc2P_p_U_Zb_-r-vzl_O0V5TRg3ggFomzJicBU_QjTQaokVch5ceoXclv-brefcPK_aw</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Gerhauser, Clarissa</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5792-3901</orcidid></search><sort><creationdate>20180605</creationdate><title>Impact of dietary gut microbial metabolites on the epigenome</title><author>Gerhauser, Clarissa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal models</topic><topic>Berries</topic><topic>Bioactive compounds</topic><topic>Bioavailability</topic><topic>Cell culture</topic><topic>Deoxyribonucleic acid</topic><topic>Diet</topic><topic>DNA</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Epigenomics</topic><topic>Fatty acids</topic><topic>Folic acid</topic><topic>Fruits</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Grain</topic><topic>Green tea</topic><topic>Gut Microbiota</topic><topic>Human Health</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Intestinal microflora</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metagenome - physiology</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>miRNA</topic><topic>Natural products</topic><topic>Phenolic acids</topic><topic>Phenols</topic><topic>Review</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerhauser, Clarissa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerhauser, Clarissa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of dietary gut microbial metabolites on the epigenome</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2018-06-05</date><risdate>2018</risdate><volume>373</volume><issue>1748</issue><spage>20170359</spage><epage>20170359</epage><pages>20170359-20170359</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet–epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(−)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for.
This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>29685968</pmid><doi>10.1098/rstb.2017.0359</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5792-3901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2018-06, Vol.373 (1748), p.20170359-20170359 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5915727 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central (PMC) |
subjects | Animal models Berries Bioactive compounds Bioavailability Cell culture Deoxyribonucleic acid Diet DNA Epigenesis, Genetic Epigenetics Epigenomics Fatty acids Folic acid Fruits Gastrointestinal Microbiome - physiology Gene expression Gene regulation Grain Green tea Gut Microbiota Human Health Humans In vivo methods and tests Intestinal microflora Metabolism Metabolites Metagenome - physiology Microbiomes Microbiota Microorganisms miRNA Natural products Phenolic acids Phenols Review Vegetables |
title | Impact of dietary gut microbial metabolites on the epigenome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20dietary%20gut%20microbial%20metabolites%20on%20the%20epigenome&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Gerhauser,%20Clarissa&rft.date=2018-06-05&rft.volume=373&rft.issue=1748&rft.spage=20170359&rft.epage=20170359&rft.pages=20170359-20170359&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2017.0359&rft_dat=%3Cproquest_pubme%3E2028833338%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c628t-74fcdd397d64b399f66cfc10fffebb5cae910ed30bce28b685786304a0fbcb063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2028833338&rft_id=info:pmid/29685968&rfr_iscdi=true |