Loading…

Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris

We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rote...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2000-11, Vol.124 (3), p.1239-1249
Main Authors: Sabar, Mohammed, De Paepe, Rosine, Yaroslav de Kouchkovsky
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043
cites cdi_FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043
container_end_page 1249
container_issue 3
container_start_page 1239
container_title Plant physiology (Bethesda)
container_volume 124
creator Sabar, Mohammed
De Paepe, Rosine
Yaroslav de Kouchkovsky
description We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rotenone, suggesting Complex I dysfunction. In contrast, the oxidation rate of exogenous NADH and the capacity of the cyanide-resistant respiration (AOX) were enhanced. Here we report that, in contrast to Gly, the rate of malate oxidation was not affected, but proceeded totally in a rotenone-insensitive pathway, strongly suggesting that survival of CMS plants depends on the activation of internal and external alternative NAD(P) H dehydrogenases and that Gly decarboxylase activity depends on Complex I functioning. A similar defect in Complex I activity and Gly oxidation was found in the NMS1 nuclear mutant, defective in the processing of the nad4 transcript, but alternative NAD(P) H dehydrogenases were less activated. In CMS and NMS1, the fraction of the AOX pathway was increased, as compared to wild type, associated with higher amounts of aox transcripts, AOX protein, and plant resistance to cyanide. Non-phosphorylating respiratory enzymes maintained normal in vivo respiration levels in both mutants, but photosynthesis was decreased, in correlation with lower leaf conductance, emphasizing mitochondrial control on photosynthesis.
doi_str_mv 10.1104/pp.124.3.1239
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279526</jstor_id><sourcerecordid>4279526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043</originalsourceid><addsrcrecordid>eNpdkduLEzEUh4Mobl199E0k4JOwU3OZSwr7stTLFtpVvDyHTHLGyTKTDEla7D_i32tqS7285ISc73dI8iH0nJI5paR8M01zyso5zytfPEAzWnFWsKoUD9GMkLwnQiwu0JMY7wkhlNPyMbrISUE4ITP0c-nHaYAfeIVX46RsGMGlK_wZ4mSDSj7s8YEAF1Wy3sUrrJzBn3qffNy71EOyGr8FHUBFwNbhu60eQIXf2MYmr3vvTLBqwBs1AP6SINhcN9ukXIrYd_jOap-scgrH_bCDmIKNT9GjTg0Rnp3qJfr2_t3X5W2x_vhhtbxZF7qqm1TUDREKBKdVbTrSGMMorbum1RXvWmaAitq0lDUtXTSiIhRqAR2AaSrBqCElv0TXx7nTth3B6Pz4oAY5BTuqsJdeWflvx9lefvc7WS0YYzn--hjv_wvd3qzl4Sz_eF0x0exoZosjq4OPMUB3DlAiDyrlNMmsUnJ5UJn5l39f7Q99cpeBVydARa2GLiinbTxzGeJlnakXR-o-ZpvnbsmaRcVq_gsQmrN1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Sabar, Mohammed ; De Paepe, Rosine ; Yaroslav de Kouchkovsky</creator><creatorcontrib>Sabar, Mohammed ; De Paepe, Rosine ; Yaroslav de Kouchkovsky</creatorcontrib><description>We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rotenone, suggesting Complex I dysfunction. In contrast, the oxidation rate of exogenous NADH and the capacity of the cyanide-resistant respiration (AOX) were enhanced. Here we report that, in contrast to Gly, the rate of malate oxidation was not affected, but proceeded totally in a rotenone-insensitive pathway, strongly suggesting that survival of CMS plants depends on the activation of internal and external alternative NAD(P) H dehydrogenases and that Gly decarboxylase activity depends on Complex I functioning. A similar defect in Complex I activity and Gly oxidation was found in the NMS1 nuclear mutant, defective in the processing of the nad4 transcript, but alternative NAD(P) H dehydrogenases were less activated. In CMS and NMS1, the fraction of the AOX pathway was increased, as compared to wild type, associated with higher amounts of aox transcripts, AOX protein, and plant resistance to cyanide. Non-phosphorylating respiratory enzymes maintained normal in vivo respiration levels in both mutants, but photosynthesis was decreased, in correlation with lower leaf conductance, emphasizing mitochondrial control on photosynthesis.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.124.3.1239</identifier><identifier>PMID: 11080300</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Bioenergetics and Photosynthesis ; Biological and medical sciences ; Cell Nucleus ; Cell Nucleus - metabolism ; Cell Respiration ; Dehydrogenases ; Electron Transport Complex I ; Enzyme Inhibitors ; Enzyme Inhibitors - pharmacology ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Glycine ; Glycine - metabolism ; Life Sciences ; Malates ; Malates - metabolism ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitochondrial Proteins ; Mutation ; NADH, NADPH Oxidoreductases ; NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors ; NADH, NADPH Oxidoreductases - metabolism ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana - ultrastructure ; Oxidases ; Oxidation ; Oxidation-Reduction ; Oxidoreductases ; Oxidoreductases - metabolism ; Photosynthesis ; Photosynthesis, respiration. Anabolism, catabolism ; Plant physiology and development ; Plant Proteins ; Plant Proteins - metabolism ; Plantlets ; Plants ; Plants, Toxic ; Potassium Cyanide ; Potassium Cyanide - pharmacology ; Respiration ; Rotenone ; Rotenone - pharmacology ; Tobacco ; Uncoupling Agents ; Uncoupling Agents - pharmacology ; Vegetal Biology</subject><ispartof>Plant physiology (Bethesda), 2000-11, Vol.124 (3), p.1239-1249</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2001 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043</citedby><cites>FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279526$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279526$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=803346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11080300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00165287$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabar, Mohammed</creatorcontrib><creatorcontrib>De Paepe, Rosine</creatorcontrib><creatorcontrib>Yaroslav de Kouchkovsky</creatorcontrib><title>Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rotenone, suggesting Complex I dysfunction. In contrast, the oxidation rate of exogenous NADH and the capacity of the cyanide-resistant respiration (AOX) were enhanced. Here we report that, in contrast to Gly, the rate of malate oxidation was not affected, but proceeded totally in a rotenone-insensitive pathway, strongly suggesting that survival of CMS plants depends on the activation of internal and external alternative NAD(P) H dehydrogenases and that Gly decarboxylase activity depends on Complex I functioning. A similar defect in Complex I activity and Gly oxidation was found in the NMS1 nuclear mutant, defective in the processing of the nad4 transcript, but alternative NAD(P) H dehydrogenases were less activated. In CMS and NMS1, the fraction of the AOX pathway was increased, as compared to wild type, associated with higher amounts of aox transcripts, AOX protein, and plant resistance to cyanide. Non-phosphorylating respiratory enzymes maintained normal in vivo respiration levels in both mutants, but photosynthesis was decreased, in correlation with lower leaf conductance, emphasizing mitochondrial control on photosynthesis.</description><subject>Bioenergetics and Photosynthesis</subject><subject>Biological and medical sciences</subject><subject>Cell Nucleus</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Respiration</subject><subject>Dehydrogenases</subject><subject>Electron Transport Complex I</subject><subject>Enzyme Inhibitors</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>Life Sciences</subject><subject>Malates</subject><subject>Malates - metabolism</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Proteins</subject><subject>Mutation</subject><subject>NADH, NADPH Oxidoreductases</subject><subject>NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - ultrastructure</subject><subject>Oxidases</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases</subject><subject>Oxidoreductases - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins</subject><subject>Plant Proteins - metabolism</subject><subject>Plantlets</subject><subject>Plants</subject><subject>Plants, Toxic</subject><subject>Potassium Cyanide</subject><subject>Potassium Cyanide - pharmacology</subject><subject>Respiration</subject><subject>Rotenone</subject><subject>Rotenone - pharmacology</subject><subject>Tobacco</subject><subject>Uncoupling Agents</subject><subject>Uncoupling Agents - pharmacology</subject><subject>Vegetal Biology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpdkduLEzEUh4Mobl199E0k4JOwU3OZSwr7stTLFtpVvDyHTHLGyTKTDEla7D_i32tqS7285ISc73dI8iH0nJI5paR8M01zyso5zytfPEAzWnFWsKoUD9GMkLwnQiwu0JMY7wkhlNPyMbrISUE4ITP0c-nHaYAfeIVX46RsGMGlK_wZ4mSDSj7s8YEAF1Wy3sUrrJzBn3qffNy71EOyGr8FHUBFwNbhu60eQIXf2MYmr3vvTLBqwBs1AP6SINhcN9ukXIrYd_jOap-scgrH_bCDmIKNT9GjTg0Rnp3qJfr2_t3X5W2x_vhhtbxZF7qqm1TUDREKBKdVbTrSGMMorbum1RXvWmaAitq0lDUtXTSiIhRqAR2AaSrBqCElv0TXx7nTth3B6Pz4oAY5BTuqsJdeWflvx9lefvc7WS0YYzn--hjv_wvd3qzl4Sz_eF0x0exoZosjq4OPMUB3DlAiDyrlNMmsUnJ5UJn5l39f7Q99cpeBVydARa2GLiinbTxzGeJlnakXR-o-ZpvnbsmaRcVq_gsQmrN1</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Sabar, Mohammed</creator><creator>De Paepe, Rosine</creator><creator>Yaroslav de Kouchkovsky</creator><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20001101</creationdate><title>Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris</title><author>Sabar, Mohammed ; De Paepe, Rosine ; Yaroslav de Kouchkovsky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bioenergetics and Photosynthesis</topic><topic>Biological and medical sciences</topic><topic>Cell Nucleus</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Respiration</topic><topic>Dehydrogenases</topic><topic>Electron Transport Complex I</topic><topic>Enzyme Inhibitors</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>Life Sciences</topic><topic>Malates</topic><topic>Malates - metabolism</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Proteins</topic><topic>Mutation</topic><topic>NADH, NADPH Oxidoreductases</topic><topic>NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - ultrastructure</topic><topic>Oxidases</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases</topic><topic>Oxidoreductases - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins</topic><topic>Plant Proteins - metabolism</topic><topic>Plantlets</topic><topic>Plants</topic><topic>Plants, Toxic</topic><topic>Potassium Cyanide</topic><topic>Potassium Cyanide - pharmacology</topic><topic>Respiration</topic><topic>Rotenone</topic><topic>Rotenone - pharmacology</topic><topic>Tobacco</topic><topic>Uncoupling Agents</topic><topic>Uncoupling Agents - pharmacology</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabar, Mohammed</creatorcontrib><creatorcontrib>De Paepe, Rosine</creatorcontrib><creatorcontrib>Yaroslav de Kouchkovsky</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabar, Mohammed</au><au>De Paepe, Rosine</au><au>Yaroslav de Kouchkovsky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>124</volume><issue>3</issue><spage>1239</spage><epage>1249</epage><pages>1239-1249</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rotenone, suggesting Complex I dysfunction. In contrast, the oxidation rate of exogenous NADH and the capacity of the cyanide-resistant respiration (AOX) were enhanced. Here we report that, in contrast to Gly, the rate of malate oxidation was not affected, but proceeded totally in a rotenone-insensitive pathway, strongly suggesting that survival of CMS plants depends on the activation of internal and external alternative NAD(P) H dehydrogenases and that Gly decarboxylase activity depends on Complex I functioning. A similar defect in Complex I activity and Gly oxidation was found in the NMS1 nuclear mutant, defective in the processing of the nad4 transcript, but alternative NAD(P) H dehydrogenases were less activated. In CMS and NMS1, the fraction of the AOX pathway was increased, as compared to wild type, associated with higher amounts of aox transcripts, AOX protein, and plant resistance to cyanide. Non-phosphorylating respiratory enzymes maintained normal in vivo respiration levels in both mutants, but photosynthesis was decreased, in correlation with lower leaf conductance, emphasizing mitochondrial control on photosynthesis.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>11080300</pmid><doi>10.1104/pp.124.3.1239</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2000-11, Vol.124 (3), p.1239-1249
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59222
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Bioenergetics and Photosynthesis
Biological and medical sciences
Cell Nucleus
Cell Nucleus - metabolism
Cell Respiration
Dehydrogenases
Electron Transport Complex I
Enzyme Inhibitors
Enzyme Inhibitors - pharmacology
Enzymes
Fundamental and applied biological sciences. Psychology
Glycine
Glycine - metabolism
Life Sciences
Malates
Malates - metabolism
Metabolism
Mitochondria
Mitochondria - metabolism
Mitochondrial DNA
Mitochondrial Proteins
Mutation
NADH, NADPH Oxidoreductases
NADH, NADPH Oxidoreductases - antagonists & inhibitors
NADH, NADPH Oxidoreductases - metabolism
Nicotiana - genetics
Nicotiana - metabolism
Nicotiana - ultrastructure
Oxidases
Oxidation
Oxidation-Reduction
Oxidoreductases
Oxidoreductases - metabolism
Photosynthesis
Photosynthesis, respiration. Anabolism, catabolism
Plant physiology and development
Plant Proteins
Plant Proteins - metabolism
Plantlets
Plants
Plants, Toxic
Potassium Cyanide
Potassium Cyanide - pharmacology
Respiration
Rotenone
Rotenone - pharmacology
Tobacco
Uncoupling Agents
Uncoupling Agents - pharmacology
Vegetal Biology
title Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20I%20Impairment,%20Respiratory%20Compensations,%20and%20Photosynthetic%20Decrease%20in%20Nuclear%20and%20Mitochondrial%20Male%20Sterile%20Mutants%20of%20Nicotiana%20sylvestris&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Sabar,%20Mohammed&rft.date=2000-11-01&rft.volume=124&rft.issue=3&rft.spage=1239&rft.epage=1249&rft.pages=1239-1249&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.124.3.1239&rft_dat=%3Cjstor_pubme%3E4279526%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/11080300&rft_jstor_id=4279526&rfr_iscdi=true