Loading…
Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris
We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rote...
Saved in:
Published in: | Plant physiology (Bethesda) 2000-11, Vol.124 (3), p.1239-1249 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043 |
container_end_page | 1249 |
container_issue | 3 |
container_start_page | 1239 |
container_title | Plant physiology (Bethesda) |
container_volume | 124 |
creator | Sabar, Mohammed De Paepe, Rosine Yaroslav de Kouchkovsky |
description | We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rotenone, suggesting Complex I dysfunction. In contrast, the oxidation rate of exogenous NADH and the capacity of the cyanide-resistant respiration (AOX) were enhanced. Here we report that, in contrast to Gly, the rate of malate oxidation was not affected, but proceeded totally in a rotenone-insensitive pathway, strongly suggesting that survival of CMS plants depends on the activation of internal and external alternative NAD(P) H dehydrogenases and that Gly decarboxylase activity depends on Complex I functioning. A similar defect in Complex I activity and Gly oxidation was found in the NMS1 nuclear mutant, defective in the processing of the nad4 transcript, but alternative NAD(P) H dehydrogenases were less activated. In CMS and NMS1, the fraction of the AOX pathway was increased, as compared to wild type, associated with higher amounts of aox transcripts, AOX protein, and plant resistance to cyanide. Non-phosphorylating respiratory enzymes maintained normal in vivo respiration levels in both mutants, but photosynthesis was decreased, in correlation with lower leaf conductance, emphasizing mitochondrial control on photosynthesis. |
doi_str_mv | 10.1104/pp.124.3.1239 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279526</jstor_id><sourcerecordid>4279526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043</originalsourceid><addsrcrecordid>eNpdkduLEzEUh4Mobl199E0k4JOwU3OZSwr7stTLFtpVvDyHTHLGyTKTDEla7D_i32tqS7285ISc73dI8iH0nJI5paR8M01zyso5zytfPEAzWnFWsKoUD9GMkLwnQiwu0JMY7wkhlNPyMbrISUE4ITP0c-nHaYAfeIVX46RsGMGlK_wZ4mSDSj7s8YEAF1Wy3sUrrJzBn3qffNy71EOyGr8FHUBFwNbhu60eQIXf2MYmr3vvTLBqwBs1AP6SINhcN9ukXIrYd_jOap-scgrH_bCDmIKNT9GjTg0Rnp3qJfr2_t3X5W2x_vhhtbxZF7qqm1TUDREKBKdVbTrSGMMorbum1RXvWmaAitq0lDUtXTSiIhRqAR2AaSrBqCElv0TXx7nTth3B6Pz4oAY5BTuqsJdeWflvx9lefvc7WS0YYzn--hjv_wvd3qzl4Sz_eF0x0exoZosjq4OPMUB3DlAiDyrlNMmsUnJ5UJn5l39f7Q99cpeBVydARa2GLiinbTxzGeJlnakXR-o-ZpvnbsmaRcVq_gsQmrN1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Sabar, Mohammed ; De Paepe, Rosine ; Yaroslav de Kouchkovsky</creator><creatorcontrib>Sabar, Mohammed ; De Paepe, Rosine ; Yaroslav de Kouchkovsky</creatorcontrib><description>We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rotenone, suggesting Complex I dysfunction. In contrast, the oxidation rate of exogenous NADH and the capacity of the cyanide-resistant respiration (AOX) were enhanced. Here we report that, in contrast to Gly, the rate of malate oxidation was not affected, but proceeded totally in a rotenone-insensitive pathway, strongly suggesting that survival of CMS plants depends on the activation of internal and external alternative NAD(P) H dehydrogenases and that Gly decarboxylase activity depends on Complex I functioning. A similar defect in Complex I activity and Gly oxidation was found in the NMS1 nuclear mutant, defective in the processing of the nad4 transcript, but alternative NAD(P) H dehydrogenases were less activated. In CMS and NMS1, the fraction of the AOX pathway was increased, as compared to wild type, associated with higher amounts of aox transcripts, AOX protein, and plant resistance to cyanide. Non-phosphorylating respiratory enzymes maintained normal in vivo respiration levels in both mutants, but photosynthesis was decreased, in correlation with lower leaf conductance, emphasizing mitochondrial control on photosynthesis.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.124.3.1239</identifier><identifier>PMID: 11080300</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Bioenergetics and Photosynthesis ; Biological and medical sciences ; Cell Nucleus ; Cell Nucleus - metabolism ; Cell Respiration ; Dehydrogenases ; Electron Transport Complex I ; Enzyme Inhibitors ; Enzyme Inhibitors - pharmacology ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Glycine ; Glycine - metabolism ; Life Sciences ; Malates ; Malates - metabolism ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitochondrial Proteins ; Mutation ; NADH, NADPH Oxidoreductases ; NADH, NADPH Oxidoreductases - antagonists & inhibitors ; NADH, NADPH Oxidoreductases - metabolism ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana - ultrastructure ; Oxidases ; Oxidation ; Oxidation-Reduction ; Oxidoreductases ; Oxidoreductases - metabolism ; Photosynthesis ; Photosynthesis, respiration. Anabolism, catabolism ; Plant physiology and development ; Plant Proteins ; Plant Proteins - metabolism ; Plantlets ; Plants ; Plants, Toxic ; Potassium Cyanide ; Potassium Cyanide - pharmacology ; Respiration ; Rotenone ; Rotenone - pharmacology ; Tobacco ; Uncoupling Agents ; Uncoupling Agents - pharmacology ; Vegetal Biology</subject><ispartof>Plant physiology (Bethesda), 2000-11, Vol.124 (3), p.1239-1249</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>2001 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043</citedby><cites>FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279526$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279526$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=803346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11080300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00165287$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabar, Mohammed</creatorcontrib><creatorcontrib>De Paepe, Rosine</creatorcontrib><creatorcontrib>Yaroslav de Kouchkovsky</creatorcontrib><title>Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rotenone, suggesting Complex I dysfunction. In contrast, the oxidation rate of exogenous NADH and the capacity of the cyanide-resistant respiration (AOX) were enhanced. Here we report that, in contrast to Gly, the rate of malate oxidation was not affected, but proceeded totally in a rotenone-insensitive pathway, strongly suggesting that survival of CMS plants depends on the activation of internal and external alternative NAD(P) H dehydrogenases and that Gly decarboxylase activity depends on Complex I functioning. A similar defect in Complex I activity and Gly oxidation was found in the NMS1 nuclear mutant, defective in the processing of the nad4 transcript, but alternative NAD(P) H dehydrogenases were less activated. In CMS and NMS1, the fraction of the AOX pathway was increased, as compared to wild type, associated with higher amounts of aox transcripts, AOX protein, and plant resistance to cyanide. Non-phosphorylating respiratory enzymes maintained normal in vivo respiration levels in both mutants, but photosynthesis was decreased, in correlation with lower leaf conductance, emphasizing mitochondrial control on photosynthesis.</description><subject>Bioenergetics and Photosynthesis</subject><subject>Biological and medical sciences</subject><subject>Cell Nucleus</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Respiration</subject><subject>Dehydrogenases</subject><subject>Electron Transport Complex I</subject><subject>Enzyme Inhibitors</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>Life Sciences</subject><subject>Malates</subject><subject>Malates - metabolism</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Proteins</subject><subject>Mutation</subject><subject>NADH, NADPH Oxidoreductases</subject><subject>NADH, NADPH Oxidoreductases - antagonists & inhibitors</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - ultrastructure</subject><subject>Oxidases</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases</subject><subject>Oxidoreductases - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins</subject><subject>Plant Proteins - metabolism</subject><subject>Plantlets</subject><subject>Plants</subject><subject>Plants, Toxic</subject><subject>Potassium Cyanide</subject><subject>Potassium Cyanide - pharmacology</subject><subject>Respiration</subject><subject>Rotenone</subject><subject>Rotenone - pharmacology</subject><subject>Tobacco</subject><subject>Uncoupling Agents</subject><subject>Uncoupling Agents - pharmacology</subject><subject>Vegetal Biology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpdkduLEzEUh4Mobl199E0k4JOwU3OZSwr7stTLFtpVvDyHTHLGyTKTDEla7D_i32tqS7285ISc73dI8iH0nJI5paR8M01zyso5zytfPEAzWnFWsKoUD9GMkLwnQiwu0JMY7wkhlNPyMbrISUE4ITP0c-nHaYAfeIVX46RsGMGlK_wZ4mSDSj7s8YEAF1Wy3sUrrJzBn3qffNy71EOyGr8FHUBFwNbhu60eQIXf2MYmr3vvTLBqwBs1AP6SINhcN9ukXIrYd_jOap-scgrH_bCDmIKNT9GjTg0Rnp3qJfr2_t3X5W2x_vhhtbxZF7qqm1TUDREKBKdVbTrSGMMorbum1RXvWmaAitq0lDUtXTSiIhRqAR2AaSrBqCElv0TXx7nTth3B6Pz4oAY5BTuqsJdeWflvx9lefvc7WS0YYzn--hjv_wvd3qzl4Sz_eF0x0exoZosjq4OPMUB3DlAiDyrlNMmsUnJ5UJn5l39f7Q99cpeBVydARa2GLiinbTxzGeJlnakXR-o-ZpvnbsmaRcVq_gsQmrN1</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Sabar, Mohammed</creator><creator>De Paepe, Rosine</creator><creator>Yaroslav de Kouchkovsky</creator><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20001101</creationdate><title>Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris</title><author>Sabar, Mohammed ; De Paepe, Rosine ; Yaroslav de Kouchkovsky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bioenergetics and Photosynthesis</topic><topic>Biological and medical sciences</topic><topic>Cell Nucleus</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Respiration</topic><topic>Dehydrogenases</topic><topic>Electron Transport Complex I</topic><topic>Enzyme Inhibitors</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>Life Sciences</topic><topic>Malates</topic><topic>Malates - metabolism</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Proteins</topic><topic>Mutation</topic><topic>NADH, NADPH Oxidoreductases</topic><topic>NADH, NADPH Oxidoreductases - antagonists & inhibitors</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - ultrastructure</topic><topic>Oxidases</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases</topic><topic>Oxidoreductases - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins</topic><topic>Plant Proteins - metabolism</topic><topic>Plantlets</topic><topic>Plants</topic><topic>Plants, Toxic</topic><topic>Potassium Cyanide</topic><topic>Potassium Cyanide - pharmacology</topic><topic>Respiration</topic><topic>Rotenone</topic><topic>Rotenone - pharmacology</topic><topic>Tobacco</topic><topic>Uncoupling Agents</topic><topic>Uncoupling Agents - pharmacology</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabar, Mohammed</creatorcontrib><creatorcontrib>De Paepe, Rosine</creatorcontrib><creatorcontrib>Yaroslav de Kouchkovsky</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabar, Mohammed</au><au>De Paepe, Rosine</au><au>Yaroslav de Kouchkovsky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>124</volume><issue>3</issue><spage>1239</spage><epage>1249</epage><pages>1239-1249</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We have previously shown that in Nicotiana sylvestris cytoplasmic male-sterile (CMS) mutants where the mtDNA lacks the nad7 gene coding for a subunit of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3), glycine (Gly) oxidation was lower than in the wild type and insensitive to rotenone, suggesting Complex I dysfunction. In contrast, the oxidation rate of exogenous NADH and the capacity of the cyanide-resistant respiration (AOX) were enhanced. Here we report that, in contrast to Gly, the rate of malate oxidation was not affected, but proceeded totally in a rotenone-insensitive pathway, strongly suggesting that survival of CMS plants depends on the activation of internal and external alternative NAD(P) H dehydrogenases and that Gly decarboxylase activity depends on Complex I functioning. A similar defect in Complex I activity and Gly oxidation was found in the NMS1 nuclear mutant, defective in the processing of the nad4 transcript, but alternative NAD(P) H dehydrogenases were less activated. In CMS and NMS1, the fraction of the AOX pathway was increased, as compared to wild type, associated with higher amounts of aox transcripts, AOX protein, and plant resistance to cyanide. Non-phosphorylating respiratory enzymes maintained normal in vivo respiration levels in both mutants, but photosynthesis was decreased, in correlation with lower leaf conductance, emphasizing mitochondrial control on photosynthesis.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>11080300</pmid><doi>10.1104/pp.124.3.1239</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2000-11, Vol.124 (3), p.1239-1249 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59222 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Bioenergetics and Photosynthesis Biological and medical sciences Cell Nucleus Cell Nucleus - metabolism Cell Respiration Dehydrogenases Electron Transport Complex I Enzyme Inhibitors Enzyme Inhibitors - pharmacology Enzymes Fundamental and applied biological sciences. Psychology Glycine Glycine - metabolism Life Sciences Malates Malates - metabolism Metabolism Mitochondria Mitochondria - metabolism Mitochondrial DNA Mitochondrial Proteins Mutation NADH, NADPH Oxidoreductases NADH, NADPH Oxidoreductases - antagonists & inhibitors NADH, NADPH Oxidoreductases - metabolism Nicotiana - genetics Nicotiana - metabolism Nicotiana - ultrastructure Oxidases Oxidation Oxidation-Reduction Oxidoreductases Oxidoreductases - metabolism Photosynthesis Photosynthesis, respiration. Anabolism, catabolism Plant physiology and development Plant Proteins Plant Proteins - metabolism Plantlets Plants Plants, Toxic Potassium Cyanide Potassium Cyanide - pharmacology Respiration Rotenone Rotenone - pharmacology Tobacco Uncoupling Agents Uncoupling Agents - pharmacology Vegetal Biology |
title | Complex I Impairment, Respiratory Compensations, and Photosynthetic Decrease in Nuclear and Mitochondrial Male Sterile Mutants of Nicotiana sylvestris |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20I%20Impairment,%20Respiratory%20Compensations,%20and%20Photosynthetic%20Decrease%20in%20Nuclear%20and%20Mitochondrial%20Male%20Sterile%20Mutants%20of%20Nicotiana%20sylvestris&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Sabar,%20Mohammed&rft.date=2000-11-01&rft.volume=124&rft.issue=3&rft.spage=1239&rft.epage=1249&rft.pages=1239-1249&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.124.3.1239&rft_dat=%3Cjstor_pubme%3E4279526%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-6708ae83156df07dd2116f7bc53fb2de186db127b1978501e68efeed75821d043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/11080300&rft_jstor_id=4279526&rfr_iscdi=true |