Loading…
PPAR-gamma agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis
Pulmonary fibrosis is characterized by alterations in fibroblast phenotypes resulting in excessive extracellular matrix accumulation and anatomic remodeling. Current therapies for this condition are largely ineffective. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the...
Saved in:
Published in: | American journal of physiology. Lung cellular and molecular physiology 2008-05, Vol.294 (5), p.L891-L901 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pulmonary fibrosis is characterized by alterations in fibroblast phenotypes resulting in excessive extracellular matrix accumulation and anatomic remodeling. Current therapies for this condition are largely ineffective. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear hormone receptor superfamily, the activation of which produces a number of biological effects, including alterations in metabolic and inflammatory responses. The role of PPAR-gamma as a potential therapeutic target for fibrotic lung diseases remains undefined. In the present study, we show expression of PPAR-gamma in fibroblasts obtained from normal human lungs and lungs of patients with idiopathic interstitial pneumonias. Treatment of lung fibroblasts and myofibroblasts with PPAR-gamma agonists results in inhibition of proliferative responses and induces cell cycle arrest. In addition, PPAR-gamma agonists, including a constitutively active PPAR-gamma construct (VP16-PPAR-gamma), inhibit the ability of transforming growth factor-beta1 to induce myofibroblast differentiation and collagen secretion. PPAR-gamma agonists also inhibit fibrosis in a murine model, even when administration is delayed until after the initial inflammation has largely resolved. These observations indicate that PPAR-gamma is an important regulator of fibroblast/myofibroblast activation and suggest a role for PPAR-gamma ligands as novel therapeutic agents for fibrotic lung diseases. |
---|---|
ISSN: | 1040-0605 1522-1504 |
DOI: | 10.1152/ajplung.00333.2007 |