Loading…

Earthquake-induced transformation of the lower crust

The structural and metamorphic evolution of the lower crust has direct effects on the lithospheric response to plate tectonic processes involved in orogeny, including subsidence of sedimentary basins, stability of deep mountain roots and extension of high-topography regions. Recent research shows th...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2018-04, Vol.556 (7702), p.487-491
Main Authors: Jamtveit, Bjørn, Ben-Zion, Yehuda, Renard, François, Austrheim, Håkon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structural and metamorphic evolution of the lower crust has direct effects on the lithospheric response to plate tectonic processes involved in orogeny, including subsidence of sedimentary basins, stability of deep mountain roots and extension of high-topography regions. Recent research shows that before orogeny most of the lower crust is dry, impermeable and mechanically strong 1 . During an orogenic event, the evolution of the lower crust is controlled by infiltration of fluids along localized shear or fracture zones. In the Bergen Arcs of Western Norway, shear zones initiate as faults generated by lower-crustal earthquakes. Seismic slip in the dry lower crust requires stresses at a level that can only be sustained over short timescales or local weakening mechanisms. However, normal earthquake activity in the seismogenic zone produces stress pulses that drive aftershocks in the lower crust 2 . Here we show that the volume of lower crust affected by such aftershocks is substantial and that fluid-driven associated metamorphic and structural transformations of the lower crust follow these earthquakes. This provides a ‘top-down’ effect on crustal geodynamics and connects processes operating at very different timescales. During continent collision and associated mountain building, a surprisingly large volume of the lower crust is shown to be affected by earthquake aftershocks, producing a top-down effect on crustal geodynamics.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-018-0045-y