Loading…

Autonomic reinnervation and functional regeneration in autologous transplanted submandibular glands in patients with severe keratoconjunctivitis sicca

Autologous submandibular gland (SMG) transplantation has been proved to ameliorate the discomforts in patients with severe keratoconjunctivitis sicca. The transplanted glands underwent a hypofunctional period and then restored secretion spontaneously. This study aims to investigate whether autonomic...

Full description

Saved in:
Bibliographic Details
Published in:International journal of oral science 2018-04, Vol.10 (2), p.14-7, Article 14
Main Authors: Zhang, Xueming, Yang, Ningyan, Liu, Xiaojing, Su, Jiazeng, Cong, Xin, Wu, Liling, Zhang, Yan, Yu, Guangyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Autologous submandibular gland (SMG) transplantation has been proved to ameliorate the discomforts in patients with severe keratoconjunctivitis sicca. The transplanted glands underwent a hypofunctional period and then restored secretion spontaneously. This study aims to investigate whether autonomic nerves reinnervate the grafts and contribute to the functional recovery, and further determine the origin of these nerves. Parts of the transplanted SMGs were collected from the epiphora patients, and a rabbit SMG transplantation model was established to fulfill the serial observation on the transplanted glands with time. The results showed that autonomic nerves distributed in the transplanted SMGs and parasympathetic ganglionic cells were observed in the stroma of the glands. Low-dense and unevenly distributed cholinergic axons, severe acinar atrophy and fibrosis were visible in the patients’ glands 4–6 months post-transplantation, whereas the cholinergic axon density and acinar area were increased with time. The acinar area or the secretory flow rate of the transplanted glands was statistically correlated with the cholinergic axon density in the rabbit model, respectively. Meanwhile, large cholinergic nerve trunks were found to locate in the temporal fascia lower to the gland, and sympathetic plexus concomitant with the arteries was observed both in the adjacent fascia and in the stroma of the glands. In summary, the transplanted SMGs are reinnervated by autonomic nerves and the cholinergic nerves play a role in the morphological and functional restoration of the glands. Moreover, these autonomic nerves might originate from the auriculotemporal nerve and the sympathetic plexus around the supplying arteries. Stomatology: Nerve Supply to Transplanted Glands in Dry Eye Syndrome Regenerated nerves play a role in restoring the function of transplanted submandibular glands (SMGs) in treating dry eye syndrome. Dry eye syndrome, or keratoconjunctivitis sicca (KCS), is a leading cause of patients visiting ophthalmologists, and one effective treatment in severe cases is transplanting SMGs (to the temporal area). Autonomic nerves have an important function in maintaining the secretory function of salivary glands, and a team headed by Yan Zhang and Guang-Yan Yu at Peking University, China investigated whether those nerves underwent reinnervation (restoration of nerve control) with transplanted SMGs in KCS patients and in a rabbit model. The authors found that in both the
ISSN:2049-3169
1674-2818
2049-3169
DOI:10.1038/s41368-018-0014-1