Loading…

Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide

Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 e...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2018-05, Vol.115 (19), p.4903-4908
Main Authors: Wang, Hong-Xia, Song, Ziyuan, Lao, Yeh-Hsing, Xu, Xin, Gong, Jing, Cheng, Du, Chakraborty, Syandan, Park, Ji Sun, Li, Mingqiang, Huang, Dantong, Yin, Lichen, Cheng, Jianjun, Leong, Kam W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3
cites cdi_FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3
container_end_page 4908
container_issue 19
container_start_page 4903
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Wang, Hong-Xia
Song, Ziyuan
Lao, Yeh-Hsing
Xu, Xin
Gong, Jing
Cheng, Du
Chakraborty, Syandan
Park, Ji Sun
Li, Mingqiang
Huang, Dantong
Yin, Lichen
Cheng, Jianjun
Leong, Kam W.
description Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.
doi_str_mv 10.1073/pnas.1712963115
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26509574</jstor_id><sourcerecordid>26509574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3</originalsourceid><addsrcrecordid>eNpVkc1PGzEQxS3UClLaMyeQJc5LZryfvlSqImiREEXQni3vejY4ZO2tvYmU_75GoVBOI-v95nlmHmMnCBcIdT4fnY4XWKOQVY5YHrAZgsSsKiR8YDMAUWdNIYoj9inGFQDIsoFDdpTwpoKmnrGnW--2Nug1X5IjTsZO1i351mq-uL9-uLufL3SU3NDabinseLvjAw1t0I4yY2PYjFMSuHaGkzM--sGvd5Pt-GPq6JLtmN4jJcrQZ_ax1-tIX17qMft9dflr8SO7-fn9evHtJutKkFNW91WujcaqMK1pJfaFgDJV07ckqrrSpZCFQI0NCEMo-jxvNQA2fd-haLr8mH3d-46bdiDTkZvSgmoMdtBhp7y26r3i7KNa-q0qZdHIMk8G5y8Gwf_ZUJzUym-CSzMrgYCyhnS8RM33VBd8jIH61x8Q1HM66jkd9ZZO6jj7f7BX_l8cCTjdA6s4-fCmV-kwZV3kfwG2q5eF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101970608</pqid></control><display><type>article</type><title>Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Wang, Hong-Xia ; Song, Ziyuan ; Lao, Yeh-Hsing ; Xu, Xin ; Gong, Jing ; Cheng, Du ; Chakraborty, Syandan ; Park, Ji Sun ; Li, Mingqiang ; Huang, Dantong ; Yin, Lichen ; Cheng, Jianjun ; Leong, Kam W.</creator><creatorcontrib>Wang, Hong-Xia ; Song, Ziyuan ; Lao, Yeh-Hsing ; Xu, Xin ; Gong, Jing ; Cheng, Du ; Chakraborty, Syandan ; Park, Ji Sun ; Li, Mingqiang ; Huang, Dantong ; Yin, Lichen ; Cheng, Jianjun ; Leong, Kam W.</creatorcontrib><description>Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by &gt;71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1712963115</identifier><identifier>PMID: 29686087</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological research ; Biological Sciences ; Cell-Penetrating Peptides - chemistry ; Cell-Penetrating Peptides - pharmacology ; Clonal deletion ; CRISPR ; CRISPR-Cas Systems ; Efficiency ; Gene deletion ; Gene Editing - methods ; Gene expression ; Gene transfer ; Gene Transfer Techniques ; Genetic modification ; Glutamic acid ; HEK293 Cells ; HeLa Cells ; Humans ; K562 Cells ; Membranes ; Mice ; Multiplexing ; Nanoparticles ; Nanoparticles - chemistry ; NIH 3T3 Cells ; Plasmids ; Plasmids - chemistry ; Plasmids - genetics ; Plasmids - pharmacology ; Plk1 protein ; Polo-like kinase ; Polo-like kinase 1 ; Polyelectrolytes ; Polypeptides ; Proteins ; Therapeutic applications ; Transfection ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (19), p.4903-4908</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences May 8, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3</citedby><cites>FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3</cites><orcidid>0000-0002-8133-4955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26509574$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26509574$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29686087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hong-Xia</creatorcontrib><creatorcontrib>Song, Ziyuan</creatorcontrib><creatorcontrib>Lao, Yeh-Hsing</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Gong, Jing</creatorcontrib><creatorcontrib>Cheng, Du</creatorcontrib><creatorcontrib>Chakraborty, Syandan</creatorcontrib><creatorcontrib>Park, Ji Sun</creatorcontrib><creatorcontrib>Li, Mingqiang</creatorcontrib><creatorcontrib>Huang, Dantong</creatorcontrib><creatorcontrib>Yin, Lichen</creatorcontrib><creatorcontrib>Cheng, Jianjun</creatorcontrib><creatorcontrib>Leong, Kam W.</creatorcontrib><title>Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by &gt;71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.</description><subject>Animals</subject><subject>Biological research</subject><subject>Biological Sciences</subject><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Cell-Penetrating Peptides - pharmacology</subject><subject>Clonal deletion</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Efficiency</subject><subject>Gene deletion</subject><subject>Gene Editing - methods</subject><subject>Gene expression</subject><subject>Gene transfer</subject><subject>Gene Transfer Techniques</subject><subject>Genetic modification</subject><subject>Glutamic acid</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Membranes</subject><subject>Mice</subject><subject>Multiplexing</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>NIH 3T3 Cells</subject><subject>Plasmids</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - genetics</subject><subject>Plasmids - pharmacology</subject><subject>Plk1 protein</subject><subject>Polo-like kinase</subject><subject>Polo-like kinase 1</subject><subject>Polyelectrolytes</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Therapeutic applications</subject><subject>Transfection</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkc1PGzEQxS3UClLaMyeQJc5LZryfvlSqImiREEXQni3vejY4ZO2tvYmU_75GoVBOI-v95nlmHmMnCBcIdT4fnY4XWKOQVY5YHrAZgsSsKiR8YDMAUWdNIYoj9inGFQDIsoFDdpTwpoKmnrGnW--2Nug1X5IjTsZO1i351mq-uL9-uLufL3SU3NDabinseLvjAw1t0I4yY2PYjFMSuHaGkzM--sGvd5Pt-GPq6JLtmN4jJcrQZ_ax1-tIX17qMft9dflr8SO7-fn9evHtJutKkFNW91WujcaqMK1pJfaFgDJV07ckqrrSpZCFQI0NCEMo-jxvNQA2fd-haLr8mH3d-46bdiDTkZvSgmoMdtBhp7y26r3i7KNa-q0qZdHIMk8G5y8Gwf_ZUJzUym-CSzMrgYCyhnS8RM33VBd8jIH61x8Q1HM66jkd9ZZO6jj7f7BX_l8cCTjdA6s4-fCmV-kwZV3kfwG2q5eF</recordid><startdate>20180508</startdate><enddate>20180508</enddate><creator>Wang, Hong-Xia</creator><creator>Song, Ziyuan</creator><creator>Lao, Yeh-Hsing</creator><creator>Xu, Xin</creator><creator>Gong, Jing</creator><creator>Cheng, Du</creator><creator>Chakraborty, Syandan</creator><creator>Park, Ji Sun</creator><creator>Li, Mingqiang</creator><creator>Huang, Dantong</creator><creator>Yin, Lichen</creator><creator>Cheng, Jianjun</creator><creator>Leong, Kam W.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8133-4955</orcidid></search><sort><creationdate>20180508</creationdate><title>Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide</title><author>Wang, Hong-Xia ; Song, Ziyuan ; Lao, Yeh-Hsing ; Xu, Xin ; Gong, Jing ; Cheng, Du ; Chakraborty, Syandan ; Park, Ji Sun ; Li, Mingqiang ; Huang, Dantong ; Yin, Lichen ; Cheng, Jianjun ; Leong, Kam W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biological research</topic><topic>Biological Sciences</topic><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Cell-Penetrating Peptides - pharmacology</topic><topic>Clonal deletion</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Efficiency</topic><topic>Gene deletion</topic><topic>Gene Editing - methods</topic><topic>Gene expression</topic><topic>Gene transfer</topic><topic>Gene Transfer Techniques</topic><topic>Genetic modification</topic><topic>Glutamic acid</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Membranes</topic><topic>Mice</topic><topic>Multiplexing</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>NIH 3T3 Cells</topic><topic>Plasmids</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - genetics</topic><topic>Plasmids - pharmacology</topic><topic>Plk1 protein</topic><topic>Polo-like kinase</topic><topic>Polo-like kinase 1</topic><topic>Polyelectrolytes</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Therapeutic applications</topic><topic>Transfection</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hong-Xia</creatorcontrib><creatorcontrib>Song, Ziyuan</creatorcontrib><creatorcontrib>Lao, Yeh-Hsing</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Gong, Jing</creatorcontrib><creatorcontrib>Cheng, Du</creatorcontrib><creatorcontrib>Chakraborty, Syandan</creatorcontrib><creatorcontrib>Park, Ji Sun</creatorcontrib><creatorcontrib>Li, Mingqiang</creatorcontrib><creatorcontrib>Huang, Dantong</creatorcontrib><creatorcontrib>Yin, Lichen</creatorcontrib><creatorcontrib>Cheng, Jianjun</creatorcontrib><creatorcontrib>Leong, Kam W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hong-Xia</au><au>Song, Ziyuan</au><au>Lao, Yeh-Hsing</au><au>Xu, Xin</au><au>Gong, Jing</au><au>Cheng, Du</au><au>Chakraborty, Syandan</au><au>Park, Ji Sun</au><au>Li, Mingqiang</au><au>Huang, Dantong</au><au>Yin, Lichen</au><au>Cheng, Jianjun</au><au>Leong, Kam W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-05-08</date><risdate>2018</risdate><volume>115</volume><issue>19</issue><spage>4903</spage><epage>4908</epage><pages>4903-4908</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by &gt;71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29686087</pmid><doi>10.1073/pnas.1712963115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8133-4955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (19), p.4903-4908
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948953
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Biological research
Biological Sciences
Cell-Penetrating Peptides - chemistry
Cell-Penetrating Peptides - pharmacology
Clonal deletion
CRISPR
CRISPR-Cas Systems
Efficiency
Gene deletion
Gene Editing - methods
Gene expression
Gene transfer
Gene Transfer Techniques
Genetic modification
Glutamic acid
HEK293 Cells
HeLa Cells
Humans
K562 Cells
Membranes
Mice
Multiplexing
Nanoparticles
Nanoparticles - chemistry
NIH 3T3 Cells
Plasmids
Plasmids - chemistry
Plasmids - genetics
Plasmids - pharmacology
Plk1 protein
Polo-like kinase
Polo-like kinase 1
Polyelectrolytes
Polypeptides
Proteins
Therapeutic applications
Transfection
Tumors
title Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonviral%20gene%20editing%20via%20CRISPR/Cas9%20delivery%20by%20membrane-disruptive%20and%20endosomolytic%20helical%20polypeptide&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Hong-Xia&rft.date=2018-05-08&rft.volume=115&rft.issue=19&rft.spage=4903&rft.epage=4908&rft.pages=4903-4908&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1712963115&rft_dat=%3Cjstor_pubme%3E26509574%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2101970608&rft_id=info:pmid/29686087&rft_jstor_id=26509574&rfr_iscdi=true