Loading…
Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide
Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 e...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-05, Vol.115 (19), p.4903-4908 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3 |
container_end_page | 4908 |
container_issue | 19 |
container_start_page | 4903 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Wang, Hong-Xia Song, Ziyuan Lao, Yeh-Hsing Xu, Xin Gong, Jing Cheng, Du Chakraborty, Syandan Park, Ji Sun Li, Mingqiang Huang, Dantong Yin, Lichen Cheng, Jianjun Leong, Kam W. |
description | Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications. |
doi_str_mv | 10.1073/pnas.1712963115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26509574</jstor_id><sourcerecordid>26509574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3</originalsourceid><addsrcrecordid>eNpVkc1PGzEQxS3UClLaMyeQJc5LZryfvlSqImiREEXQni3vejY4ZO2tvYmU_75GoVBOI-v95nlmHmMnCBcIdT4fnY4XWKOQVY5YHrAZgsSsKiR8YDMAUWdNIYoj9inGFQDIsoFDdpTwpoKmnrGnW--2Nug1X5IjTsZO1i351mq-uL9-uLufL3SU3NDabinseLvjAw1t0I4yY2PYjFMSuHaGkzM--sGvd5Pt-GPq6JLtmN4jJcrQZ_ax1-tIX17qMft9dflr8SO7-fn9evHtJutKkFNW91WujcaqMK1pJfaFgDJV07ckqrrSpZCFQI0NCEMo-jxvNQA2fd-haLr8mH3d-46bdiDTkZvSgmoMdtBhp7y26r3i7KNa-q0qZdHIMk8G5y8Gwf_ZUJzUym-CSzMrgYCyhnS8RM33VBd8jIH61x8Q1HM66jkd9ZZO6jj7f7BX_l8cCTjdA6s4-fCmV-kwZV3kfwG2q5eF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101970608</pqid></control><display><type>article</type><title>Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Wang, Hong-Xia ; Song, Ziyuan ; Lao, Yeh-Hsing ; Xu, Xin ; Gong, Jing ; Cheng, Du ; Chakraborty, Syandan ; Park, Ji Sun ; Li, Mingqiang ; Huang, Dantong ; Yin, Lichen ; Cheng, Jianjun ; Leong, Kam W.</creator><creatorcontrib>Wang, Hong-Xia ; Song, Ziyuan ; Lao, Yeh-Hsing ; Xu, Xin ; Gong, Jing ; Cheng, Du ; Chakraborty, Syandan ; Park, Ji Sun ; Li, Mingqiang ; Huang, Dantong ; Yin, Lichen ; Cheng, Jianjun ; Leong, Kam W.</creatorcontrib><description>Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1712963115</identifier><identifier>PMID: 29686087</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological research ; Biological Sciences ; Cell-Penetrating Peptides - chemistry ; Cell-Penetrating Peptides - pharmacology ; Clonal deletion ; CRISPR ; CRISPR-Cas Systems ; Efficiency ; Gene deletion ; Gene Editing - methods ; Gene expression ; Gene transfer ; Gene Transfer Techniques ; Genetic modification ; Glutamic acid ; HEK293 Cells ; HeLa Cells ; Humans ; K562 Cells ; Membranes ; Mice ; Multiplexing ; Nanoparticles ; Nanoparticles - chemistry ; NIH 3T3 Cells ; Plasmids ; Plasmids - chemistry ; Plasmids - genetics ; Plasmids - pharmacology ; Plk1 protein ; Polo-like kinase ; Polo-like kinase 1 ; Polyelectrolytes ; Polypeptides ; Proteins ; Therapeutic applications ; Transfection ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (19), p.4903-4908</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences May 8, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3</citedby><cites>FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3</cites><orcidid>0000-0002-8133-4955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26509574$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26509574$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29686087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hong-Xia</creatorcontrib><creatorcontrib>Song, Ziyuan</creatorcontrib><creatorcontrib>Lao, Yeh-Hsing</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Gong, Jing</creatorcontrib><creatorcontrib>Cheng, Du</creatorcontrib><creatorcontrib>Chakraborty, Syandan</creatorcontrib><creatorcontrib>Park, Ji Sun</creatorcontrib><creatorcontrib>Li, Mingqiang</creatorcontrib><creatorcontrib>Huang, Dantong</creatorcontrib><creatorcontrib>Yin, Lichen</creatorcontrib><creatorcontrib>Cheng, Jianjun</creatorcontrib><creatorcontrib>Leong, Kam W.</creatorcontrib><title>Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.</description><subject>Animals</subject><subject>Biological research</subject><subject>Biological Sciences</subject><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Cell-Penetrating Peptides - pharmacology</subject><subject>Clonal deletion</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Efficiency</subject><subject>Gene deletion</subject><subject>Gene Editing - methods</subject><subject>Gene expression</subject><subject>Gene transfer</subject><subject>Gene Transfer Techniques</subject><subject>Genetic modification</subject><subject>Glutamic acid</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Membranes</subject><subject>Mice</subject><subject>Multiplexing</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>NIH 3T3 Cells</subject><subject>Plasmids</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - genetics</subject><subject>Plasmids - pharmacology</subject><subject>Plk1 protein</subject><subject>Polo-like kinase</subject><subject>Polo-like kinase 1</subject><subject>Polyelectrolytes</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Therapeutic applications</subject><subject>Transfection</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkc1PGzEQxS3UClLaMyeQJc5LZryfvlSqImiREEXQni3vejY4ZO2tvYmU_75GoVBOI-v95nlmHmMnCBcIdT4fnY4XWKOQVY5YHrAZgsSsKiR8YDMAUWdNIYoj9inGFQDIsoFDdpTwpoKmnrGnW--2Nug1X5IjTsZO1i351mq-uL9-uLufL3SU3NDabinseLvjAw1t0I4yY2PYjFMSuHaGkzM--sGvd5Pt-GPq6JLtmN4jJcrQZ_ax1-tIX17qMft9dflr8SO7-fn9evHtJutKkFNW91WujcaqMK1pJfaFgDJV07ckqrrSpZCFQI0NCEMo-jxvNQA2fd-haLr8mH3d-46bdiDTkZvSgmoMdtBhp7y26r3i7KNa-q0qZdHIMk8G5y8Gwf_ZUJzUym-CSzMrgYCyhnS8RM33VBd8jIH61x8Q1HM66jkd9ZZO6jj7f7BX_l8cCTjdA6s4-fCmV-kwZV3kfwG2q5eF</recordid><startdate>20180508</startdate><enddate>20180508</enddate><creator>Wang, Hong-Xia</creator><creator>Song, Ziyuan</creator><creator>Lao, Yeh-Hsing</creator><creator>Xu, Xin</creator><creator>Gong, Jing</creator><creator>Cheng, Du</creator><creator>Chakraborty, Syandan</creator><creator>Park, Ji Sun</creator><creator>Li, Mingqiang</creator><creator>Huang, Dantong</creator><creator>Yin, Lichen</creator><creator>Cheng, Jianjun</creator><creator>Leong, Kam W.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8133-4955</orcidid></search><sort><creationdate>20180508</creationdate><title>Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide</title><author>Wang, Hong-Xia ; Song, Ziyuan ; Lao, Yeh-Hsing ; Xu, Xin ; Gong, Jing ; Cheng, Du ; Chakraborty, Syandan ; Park, Ji Sun ; Li, Mingqiang ; Huang, Dantong ; Yin, Lichen ; Cheng, Jianjun ; Leong, Kam W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biological research</topic><topic>Biological Sciences</topic><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Cell-Penetrating Peptides - pharmacology</topic><topic>Clonal deletion</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Efficiency</topic><topic>Gene deletion</topic><topic>Gene Editing - methods</topic><topic>Gene expression</topic><topic>Gene transfer</topic><topic>Gene Transfer Techniques</topic><topic>Genetic modification</topic><topic>Glutamic acid</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Membranes</topic><topic>Mice</topic><topic>Multiplexing</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>NIH 3T3 Cells</topic><topic>Plasmids</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - genetics</topic><topic>Plasmids - pharmacology</topic><topic>Plk1 protein</topic><topic>Polo-like kinase</topic><topic>Polo-like kinase 1</topic><topic>Polyelectrolytes</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Therapeutic applications</topic><topic>Transfection</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hong-Xia</creatorcontrib><creatorcontrib>Song, Ziyuan</creatorcontrib><creatorcontrib>Lao, Yeh-Hsing</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Gong, Jing</creatorcontrib><creatorcontrib>Cheng, Du</creatorcontrib><creatorcontrib>Chakraborty, Syandan</creatorcontrib><creatorcontrib>Park, Ji Sun</creatorcontrib><creatorcontrib>Li, Mingqiang</creatorcontrib><creatorcontrib>Huang, Dantong</creatorcontrib><creatorcontrib>Yin, Lichen</creatorcontrib><creatorcontrib>Cheng, Jianjun</creatorcontrib><creatorcontrib>Leong, Kam W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hong-Xia</au><au>Song, Ziyuan</au><au>Lao, Yeh-Hsing</au><au>Xu, Xin</au><au>Gong, Jing</au><au>Cheng, Du</au><au>Chakraborty, Syandan</au><au>Park, Ji Sun</au><au>Li, Mingqiang</au><au>Huang, Dantong</au><au>Yin, Lichen</au><au>Cheng, Jianjun</au><au>Leong, Kam W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-05-08</date><risdate>2018</risdate><volume>115</volume><issue>19</issue><spage>4903</spage><epage>4908</epage><pages>4903-4908</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29686087</pmid><doi>10.1073/pnas.1712963115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8133-4955</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (19), p.4903-4908 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948953 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Biological research Biological Sciences Cell-Penetrating Peptides - chemistry Cell-Penetrating Peptides - pharmacology Clonal deletion CRISPR CRISPR-Cas Systems Efficiency Gene deletion Gene Editing - methods Gene expression Gene transfer Gene Transfer Techniques Genetic modification Glutamic acid HEK293 Cells HeLa Cells Humans K562 Cells Membranes Mice Multiplexing Nanoparticles Nanoparticles - chemistry NIH 3T3 Cells Plasmids Plasmids - chemistry Plasmids - genetics Plasmids - pharmacology Plk1 protein Polo-like kinase Polo-like kinase 1 Polyelectrolytes Polypeptides Proteins Therapeutic applications Transfection Tumors |
title | Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonviral%20gene%20editing%20via%20CRISPR/Cas9%20delivery%20by%20membrane-disruptive%20and%20endosomolytic%20helical%20polypeptide&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Hong-Xia&rft.date=2018-05-08&rft.volume=115&rft.issue=19&rft.spage=4903&rft.epage=4908&rft.pages=4903-4908&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1712963115&rft_dat=%3Cjstor_pubme%3E26509574%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-7f63ada164dbdb91f4205b91dfbe2676a529421a1802de12f33ba0018ffc128c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2101970608&rft_id=info:pmid/29686087&rft_jstor_id=26509574&rfr_iscdi=true |