Loading…

Mechanism of Mercury Adsorption and Oxidation by Oxygen over the CeO₂ (111) Surface: A DFT Study

CeO₂ is a promising catalytic oxidation material for flue gas mercury removal. Density functional theory (DFT) calculations and periodic slab models are employed to investigate mercury adsorption and oxidation by oxygen over the CeO₂ (111) surface. DFT calculations indicate that Hg⁰ is physically ad...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2018-03, Vol.11 (4), p.485
Main Authors: Zhao, Li, Wu, Yangwen, Han, Jian, Lu, Qiang, Yang, Yongping, Zhang, Laibao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-4b3d0cfec552934a1b445228c57f385bc78c5ade3641a9ebbc5cf7fbc4ae10ce3
cites cdi_FETCH-LOGICAL-c472t-4b3d0cfec552934a1b445228c57f385bc78c5ade3641a9ebbc5cf7fbc4ae10ce3
container_end_page
container_issue 4
container_start_page 485
container_title Materials
container_volume 11
creator Zhao, Li
Wu, Yangwen
Han, Jian
Lu, Qiang
Yang, Yongping
Zhang, Laibao
description CeO₂ is a promising catalytic oxidation material for flue gas mercury removal. Density functional theory (DFT) calculations and periodic slab models are employed to investigate mercury adsorption and oxidation by oxygen over the CeO₂ (111) surface. DFT calculations indicate that Hg⁰ is physically adsorbed on the CeO₂ (111) surface and the Hg atom interacts strongly with the surface Ce atom according to the partial density of states (PDOS) analysis, whereas, HgO is adsorbed on the CeO₂ (111) surface in a chemisorption manner, with its adsorption energy in the range of 69.9-198.37 kJ/mol. Depending on the adsorption methods of Hg⁰ and HgO, three reaction pathways (pathways I, II, and III) of Hg⁰ oxidation by oxygen are proposed. Pathway I is the most likely oxidation route on the CeO₂ (111) surface due to it having the lowest energy barrier of 20.7 kJ/mol. The formation of the HgO molecule is the rate-determining step, which is also the only energy barrier of the entire process. Compared with energy barriers of Hg⁰ oxidation on the other catalytic materials, CeO₂ is more efficient at mercury removal in flue gas owing to its low energy barrier.
doi_str_mv 10.3390/ma11040485
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5951331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2040942770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-4b3d0cfec552934a1b445228c57f385bc78c5ade3641a9ebbc5cf7fbc4ae10ce3</originalsourceid><addsrcrecordid>eNpdkclKBDEQhoMoKurFB5CAFxVGs053PAjDuIIyB_UcknS10zLdGZNusa8-qk9i3Je6VBX18VNVP0KblOxzrshBbSglgohcLqBVqtRwQJUQi7_qFbQR4z1JwTnNmVpGK0zJjAxlvorsFbipaapYY1_iKwiuCz0eFdGHeVv5BpumwJOnqjDvne1T099Bg_0jBNxOAY9h8vL8jHcopbv4ugulcXCIR_j49AZft13Rr6Ol0swibHzmNXR7enIzPh9cTs4uxqPLgRMZawfC8oK4EpyUTHFhqBVCMpY7mZU8l9ZlqTQF8KGgRoG1TroyK60TBihxwNfQ0YfuvLM1FA6aNpiZnoeqNqHX3lT676SppvrOP2qpJE2vSQI7nwLBP3QQW11X0cFsZhrwXdSM0JwwKXOe0O1_6L3vQpPOS5QgSrAsI4na-6Bc8DEGKL-XoUS_uad_3Evw1u_1v9Evr_grBBiUmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040942770</pqid></control><display><type>article</type><title>Mechanism of Mercury Adsorption and Oxidation by Oxygen over the CeO₂ (111) Surface: A DFT Study</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Li ; Wu, Yangwen ; Han, Jian ; Lu, Qiang ; Yang, Yongping ; Zhang, Laibao</creator><creatorcontrib>Zhao, Li ; Wu, Yangwen ; Han, Jian ; Lu, Qiang ; Yang, Yongping ; Zhang, Laibao</creatorcontrib><description>CeO₂ is a promising catalytic oxidation material for flue gas mercury removal. Density functional theory (DFT) calculations and periodic slab models are employed to investigate mercury adsorption and oxidation by oxygen over the CeO₂ (111) surface. DFT calculations indicate that Hg⁰ is physically adsorbed on the CeO₂ (111) surface and the Hg atom interacts strongly with the surface Ce atom according to the partial density of states (PDOS) analysis, whereas, HgO is adsorbed on the CeO₂ (111) surface in a chemisorption manner, with its adsorption energy in the range of 69.9-198.37 kJ/mol. Depending on the adsorption methods of Hg⁰ and HgO, three reaction pathways (pathways I, II, and III) of Hg⁰ oxidation by oxygen are proposed. Pathway I is the most likely oxidation route on the CeO₂ (111) surface due to it having the lowest energy barrier of 20.7 kJ/mol. The formation of the HgO molecule is the rate-determining step, which is also the only energy barrier of the entire process. Compared with energy barriers of Hg⁰ oxidation on the other catalytic materials, CeO₂ is more efficient at mercury removal in flue gas owing to its low energy barrier.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma11040485</identifier><identifier>PMID: 29570658</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Barriers ; Catalysis ; Cerium oxides ; Chemisorption ; Density functional theory ; Flue gas ; Mercury ; Mercury (metal) ; Molecular chains ; Oxidation ; Oxygen ; Surface chemistry</subject><ispartof>Materials, 2018-03, Vol.11 (4), p.485</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-4b3d0cfec552934a1b445228c57f385bc78c5ade3641a9ebbc5cf7fbc4ae10ce3</citedby><cites>FETCH-LOGICAL-c472t-4b3d0cfec552934a1b445228c57f385bc78c5ade3641a9ebbc5cf7fbc4ae10ce3</cites><orcidid>0000-0002-2325-5124 ; 0000-0002-4340-1803 ; 0000-0002-9773-0792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2040942770/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2040942770?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29570658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Wu, Yangwen</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Yang, Yongping</creatorcontrib><creatorcontrib>Zhang, Laibao</creatorcontrib><title>Mechanism of Mercury Adsorption and Oxidation by Oxygen over the CeO₂ (111) Surface: A DFT Study</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>CeO₂ is a promising catalytic oxidation material for flue gas mercury removal. Density functional theory (DFT) calculations and periodic slab models are employed to investigate mercury adsorption and oxidation by oxygen over the CeO₂ (111) surface. DFT calculations indicate that Hg⁰ is physically adsorbed on the CeO₂ (111) surface and the Hg atom interacts strongly with the surface Ce atom according to the partial density of states (PDOS) analysis, whereas, HgO is adsorbed on the CeO₂ (111) surface in a chemisorption manner, with its adsorption energy in the range of 69.9-198.37 kJ/mol. Depending on the adsorption methods of Hg⁰ and HgO, three reaction pathways (pathways I, II, and III) of Hg⁰ oxidation by oxygen are proposed. Pathway I is the most likely oxidation route on the CeO₂ (111) surface due to it having the lowest energy barrier of 20.7 kJ/mol. The formation of the HgO molecule is the rate-determining step, which is also the only energy barrier of the entire process. Compared with energy barriers of Hg⁰ oxidation on the other catalytic materials, CeO₂ is more efficient at mercury removal in flue gas owing to its low energy barrier.</description><subject>Adsorption</subject><subject>Barriers</subject><subject>Catalysis</subject><subject>Cerium oxides</subject><subject>Chemisorption</subject><subject>Density functional theory</subject><subject>Flue gas</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Molecular chains</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Surface chemistry</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkclKBDEQhoMoKurFB5CAFxVGs053PAjDuIIyB_UcknS10zLdGZNusa8-qk9i3Je6VBX18VNVP0KblOxzrshBbSglgohcLqBVqtRwQJUQi7_qFbQR4z1JwTnNmVpGK0zJjAxlvorsFbipaapYY1_iKwiuCz0eFdGHeVv5BpumwJOnqjDvne1T099Bg_0jBNxOAY9h8vL8jHcopbv4ugulcXCIR_j49AZft13Rr6Ol0swibHzmNXR7enIzPh9cTs4uxqPLgRMZawfC8oK4EpyUTHFhqBVCMpY7mZU8l9ZlqTQF8KGgRoG1TroyK60TBihxwNfQ0YfuvLM1FA6aNpiZnoeqNqHX3lT676SppvrOP2qpJE2vSQI7nwLBP3QQW11X0cFsZhrwXdSM0JwwKXOe0O1_6L3vQpPOS5QgSrAsI4na-6Bc8DEGKL-XoUS_uad_3Evw1u_1v9Evr_grBBiUmg</recordid><startdate>20180323</startdate><enddate>20180323</enddate><creator>Zhao, Li</creator><creator>Wu, Yangwen</creator><creator>Han, Jian</creator><creator>Lu, Qiang</creator><creator>Yang, Yongping</creator><creator>Zhang, Laibao</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2325-5124</orcidid><orcidid>https://orcid.org/0000-0002-4340-1803</orcidid><orcidid>https://orcid.org/0000-0002-9773-0792</orcidid></search><sort><creationdate>20180323</creationdate><title>Mechanism of Mercury Adsorption and Oxidation by Oxygen over the CeO₂ (111) Surface: A DFT Study</title><author>Zhao, Li ; Wu, Yangwen ; Han, Jian ; Lu, Qiang ; Yang, Yongping ; Zhang, Laibao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-4b3d0cfec552934a1b445228c57f385bc78c5ade3641a9ebbc5cf7fbc4ae10ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Barriers</topic><topic>Catalysis</topic><topic>Cerium oxides</topic><topic>Chemisorption</topic><topic>Density functional theory</topic><topic>Flue gas</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Molecular chains</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Wu, Yangwen</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Yang, Yongping</creatorcontrib><creatorcontrib>Zhang, Laibao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Li</au><au>Wu, Yangwen</au><au>Han, Jian</au><au>Lu, Qiang</au><au>Yang, Yongping</au><au>Zhang, Laibao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Mercury Adsorption and Oxidation by Oxygen over the CeO₂ (111) Surface: A DFT Study</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2018-03-23</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>485</spage><pages>485-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>CeO₂ is a promising catalytic oxidation material for flue gas mercury removal. Density functional theory (DFT) calculations and periodic slab models are employed to investigate mercury adsorption and oxidation by oxygen over the CeO₂ (111) surface. DFT calculations indicate that Hg⁰ is physically adsorbed on the CeO₂ (111) surface and the Hg atom interacts strongly with the surface Ce atom according to the partial density of states (PDOS) analysis, whereas, HgO is adsorbed on the CeO₂ (111) surface in a chemisorption manner, with its adsorption energy in the range of 69.9-198.37 kJ/mol. Depending on the adsorption methods of Hg⁰ and HgO, three reaction pathways (pathways I, II, and III) of Hg⁰ oxidation by oxygen are proposed. Pathway I is the most likely oxidation route on the CeO₂ (111) surface due to it having the lowest energy barrier of 20.7 kJ/mol. The formation of the HgO molecule is the rate-determining step, which is also the only energy barrier of the entire process. Compared with energy barriers of Hg⁰ oxidation on the other catalytic materials, CeO₂ is more efficient at mercury removal in flue gas owing to its low energy barrier.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29570658</pmid><doi>10.3390/ma11040485</doi><orcidid>https://orcid.org/0000-0002-2325-5124</orcidid><orcidid>https://orcid.org/0000-0002-4340-1803</orcidid><orcidid>https://orcid.org/0000-0002-9773-0792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2018-03, Vol.11 (4), p.485
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5951331
source PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Adsorption
Barriers
Catalysis
Cerium oxides
Chemisorption
Density functional theory
Flue gas
Mercury
Mercury (metal)
Molecular chains
Oxidation
Oxygen
Surface chemistry
title Mechanism of Mercury Adsorption and Oxidation by Oxygen over the CeO₂ (111) Surface: A DFT Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Mercury%20Adsorption%20and%20Oxidation%20by%20Oxygen%20over%20the%20CeO%E2%82%82%20(111)%20Surface:%20A%20DFT%20Study&rft.jtitle=Materials&rft.au=Zhao,%20Li&rft.date=2018-03-23&rft.volume=11&rft.issue=4&rft.spage=485&rft.pages=485-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma11040485&rft_dat=%3Cproquest_pubme%3E2040942770%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-4b3d0cfec552934a1b445228c57f385bc78c5ade3641a9ebbc5cf7fbc4ae10ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2040942770&rft_id=info:pmid/29570658&rfr_iscdi=true