Loading…

Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study

In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2018-04, Vol.114 (7), p.1551-1562
Main Authors: Oprzeska-Zingrebe, Ewa Anna, Smiatek, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783
cites cdi_FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783
container_end_page 1562
container_issue 7
container_start_page 1551
container_title Biophysical journal
container_volume 114
creator Oprzeska-Zingrebe, Ewa Anna
Smiatek, Jens
description In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.
doi_str_mv 10.1016/j.bpj.2018.02.013
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5954286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349518302169</els_id><sourcerecordid>2024469718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBAIyuMDuCAfuSSsnThJQUIqbyReEnDhYrn2BlylcbETpP49rgoILpxWq5md3Z0hZJdByoAVB5N0PJukHFiVAk-BZStkwETOE4CqWCUDACiSLB-KDbIZwgSAcQFsnWzwYZFz4MWAvDx4rNFj21nV0BPbGtu-UlfTZ4-Kdo4-xr7B5LHzqjVo6NndiMam113vMRzSEb11Deq-UZ6ezVs1tTpEQm_m22StVk3Ana-6RZ4vzp9Or5Kb-8vr09FNogUru6QUY5UD1NpkRmQlqLxWY2WAlRgRRJ2VionCCKMrZjQ3nOcMsohC5JZVtkWOl7qzfjxFo-MvXjVy5u1U-bl0ysq_SGvf5Kv7kGIYvaqKKLD_JeDde4-hk1MbNDaNatH1QUan8rwYlmyxiy2p2rsQonU_axjIRSZyImMmcpGJBC5jJnFm7_d9PxPfIUTC0ZKA0aUPi14GbbHVaKxH3Unj7D_yn9yqnZk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024469718</pqid></control><display><type>article</type><title>Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study</title><source>PubMed Central</source><creator>Oprzeska-Zingrebe, Ewa Anna ; Smiatek, Jens</creator><creatorcontrib>Oprzeska-Zingrebe, Ewa Anna ; Smiatek, Jens</creatorcontrib><description>In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2018.02.013</identifier><identifier>PMID: 29642026</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - metabolism ; Hydrogen Bonding ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Nucleic Acids and Genome Biophysics ; Solvents - chemistry ; Urea - metabolism</subject><ispartof>Biophysical journal, 2018-04, Vol.114 (7), p.1551-1562</ispartof><rights>2018 Biophysical Society</rights><rights>Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 Biophysical Society. 2018 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783</citedby><cites>FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954286/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954286/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29642026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oprzeska-Zingrebe, Ewa Anna</creatorcontrib><creatorcontrib>Smiatek, Jens</creatorcontrib><title>Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.</description><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acids and Genome Biophysics</subject><subject>Solvents - chemistry</subject><subject>Urea - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQtBAIyuMDuCAfuSSsnThJQUIqbyReEnDhYrn2BlylcbETpP49rgoILpxWq5md3Z0hZJdByoAVB5N0PJukHFiVAk-BZStkwETOE4CqWCUDACiSLB-KDbIZwgSAcQFsnWzwYZFz4MWAvDx4rNFj21nV0BPbGtu-UlfTZ4-Kdo4-xr7B5LHzqjVo6NndiMam113vMRzSEb11Deq-UZ6ezVs1tTpEQm_m22StVk3Ana-6RZ4vzp9Or5Kb-8vr09FNogUru6QUY5UD1NpkRmQlqLxWY2WAlRgRRJ2VionCCKMrZjQ3nOcMsohC5JZVtkWOl7qzfjxFo-MvXjVy5u1U-bl0ysq_SGvf5Kv7kGIYvaqKKLD_JeDde4-hk1MbNDaNatH1QUan8rwYlmyxiy2p2rsQonU_axjIRSZyImMmcpGJBC5jJnFm7_d9PxPfIUTC0ZKA0aUPi14GbbHVaKxH3Unj7D_yn9yqnZk</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Oprzeska-Zingrebe, Ewa Anna</creator><creator>Smiatek, Jens</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180410</creationdate><title>Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study</title><author>Oprzeska-Zingrebe, Ewa Anna ; Smiatek, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acids and Genome Biophysics</topic><topic>Solvents - chemistry</topic><topic>Urea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oprzeska-Zingrebe, Ewa Anna</creatorcontrib><creatorcontrib>Smiatek, Jens</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oprzeska-Zingrebe, Ewa Anna</au><au>Smiatek, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>114</volume><issue>7</issue><spage>1551</spage><epage>1562</epage><pages>1551-1562</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29642026</pmid><doi>10.1016/j.bpj.2018.02.013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2018-04, Vol.114 (7), p.1551-1562
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5954286
source PubMed Central
subjects DNA, Single-Stranded - chemistry
DNA, Single-Stranded - metabolism
Hydrogen Bonding
Molecular Dynamics Simulation
Nucleic Acid Conformation
Nucleic Acids and Genome Biophysics
Solvents - chemistry
Urea - metabolism
title Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20Binding%20of%20Urea%20to%20Single-Stranded%20DNA%20Structures:%20A%20Molecular%20Dynamics%20Study&rft.jtitle=Biophysical%20journal&rft.au=Oprzeska-Zingrebe,%20Ewa%20Anna&rft.date=2018-04-10&rft.volume=114&rft.issue=7&rft.spage=1551&rft.epage=1562&rft.pages=1551-1562&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2018.02.013&rft_dat=%3Cproquest_pubme%3E2024469718%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024469718&rft_id=info:pmid/29642026&rfr_iscdi=true