Loading…
Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study
In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the...
Saved in:
Published in: | Biophysical journal 2018-04, Vol.114 (7), p.1551-1562 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783 |
container_end_page | 1562 |
container_issue | 7 |
container_start_page | 1551 |
container_title | Biophysical journal |
container_volume | 114 |
creator | Oprzeska-Zingrebe, Ewa Anna Smiatek, Jens |
description | In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general. |
doi_str_mv | 10.1016/j.bpj.2018.02.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5954286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349518302169</els_id><sourcerecordid>2024469718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBAIyuMDuCAfuSSsnThJQUIqbyReEnDhYrn2BlylcbETpP49rgoILpxWq5md3Z0hZJdByoAVB5N0PJukHFiVAk-BZStkwETOE4CqWCUDACiSLB-KDbIZwgSAcQFsnWzwYZFz4MWAvDx4rNFj21nV0BPbGtu-UlfTZ4-Kdo4-xr7B5LHzqjVo6NndiMam113vMRzSEb11Deq-UZ6ezVs1tTpEQm_m22StVk3Ana-6RZ4vzp9Or5Kb-8vr09FNogUru6QUY5UD1NpkRmQlqLxWY2WAlRgRRJ2VionCCKMrZjQ3nOcMsohC5JZVtkWOl7qzfjxFo-MvXjVy5u1U-bl0ysq_SGvf5Kv7kGIYvaqKKLD_JeDde4-hk1MbNDaNatH1QUan8rwYlmyxiy2p2rsQonU_axjIRSZyImMmcpGJBC5jJnFm7_d9PxPfIUTC0ZKA0aUPi14GbbHVaKxH3Unj7D_yn9yqnZk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024469718</pqid></control><display><type>article</type><title>Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study</title><source>PubMed Central</source><creator>Oprzeska-Zingrebe, Ewa Anna ; Smiatek, Jens</creator><creatorcontrib>Oprzeska-Zingrebe, Ewa Anna ; Smiatek, Jens</creatorcontrib><description>In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2018.02.013</identifier><identifier>PMID: 29642026</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - metabolism ; Hydrogen Bonding ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Nucleic Acids and Genome Biophysics ; Solvents - chemistry ; Urea - metabolism</subject><ispartof>Biophysical journal, 2018-04, Vol.114 (7), p.1551-1562</ispartof><rights>2018 Biophysical Society</rights><rights>Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 Biophysical Society. 2018 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783</citedby><cites>FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954286/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954286/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29642026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oprzeska-Zingrebe, Ewa Anna</creatorcontrib><creatorcontrib>Smiatek, Jens</creatorcontrib><title>Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.</description><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acids and Genome Biophysics</subject><subject>Solvents - chemistry</subject><subject>Urea - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQtBAIyuMDuCAfuSSsnThJQUIqbyReEnDhYrn2BlylcbETpP49rgoILpxWq5md3Z0hZJdByoAVB5N0PJukHFiVAk-BZStkwETOE4CqWCUDACiSLB-KDbIZwgSAcQFsnWzwYZFz4MWAvDx4rNFj21nV0BPbGtu-UlfTZ4-Kdo4-xr7B5LHzqjVo6NndiMam113vMRzSEb11Deq-UZ6ezVs1tTpEQm_m22StVk3Ana-6RZ4vzp9Or5Kb-8vr09FNogUru6QUY5UD1NpkRmQlqLxWY2WAlRgRRJ2VionCCKMrZjQ3nOcMsohC5JZVtkWOl7qzfjxFo-MvXjVy5u1U-bl0ysq_SGvf5Kv7kGIYvaqKKLD_JeDde4-hk1MbNDaNatH1QUan8rwYlmyxiy2p2rsQonU_axjIRSZyImMmcpGJBC5jJnFm7_d9PxPfIUTC0ZKA0aUPi14GbbHVaKxH3Unj7D_yn9yqnZk</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Oprzeska-Zingrebe, Ewa Anna</creator><creator>Smiatek, Jens</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180410</creationdate><title>Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study</title><author>Oprzeska-Zingrebe, Ewa Anna ; Smiatek, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acids and Genome Biophysics</topic><topic>Solvents - chemistry</topic><topic>Urea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oprzeska-Zingrebe, Ewa Anna</creatorcontrib><creatorcontrib>Smiatek, Jens</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oprzeska-Zingrebe, Ewa Anna</au><au>Smiatek, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>114</volume><issue>7</issue><spage>1551</spage><epage>1562</epage><pages>1551-1562</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29642026</pmid><doi>10.1016/j.bpj.2018.02.013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2018-04, Vol.114 (7), p.1551-1562 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5954286 |
source | PubMed Central |
subjects | DNA, Single-Stranded - chemistry DNA, Single-Stranded - metabolism Hydrogen Bonding Molecular Dynamics Simulation Nucleic Acid Conformation Nucleic Acids and Genome Biophysics Solvents - chemistry Urea - metabolism |
title | Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20Binding%20of%20Urea%20to%20Single-Stranded%20DNA%20Structures:%20A%20Molecular%20Dynamics%20Study&rft.jtitle=Biophysical%20journal&rft.au=Oprzeska-Zingrebe,%20Ewa%20Anna&rft.date=2018-04-10&rft.volume=114&rft.issue=7&rft.spage=1551&rft.epage=1562&rft.pages=1551-1562&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2018.02.013&rft_dat=%3Cproquest_pubme%3E2024469718%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-75ba400fcd3d5370a4fabad017e5baeec37a156d5dc81dc2d2241037e500a4783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024469718&rft_id=info:pmid/29642026&rfr_iscdi=true |