Loading…
Treatment of Saos-2 osteosarcoma cells with diallyl trisulfide is associated with an increase in calreticulin expression
Diallyl trisulfide (DATS) is a natural organic sulfur compound that may be isolated from garlic and has strong anticancer activity. DATS has been demonstrated to upregulate the expression of calreticulin (CRT) in various types of human cancers, which is associated with the prognosis of cancer and it...
Saved in:
Published in: | Experimental and therapeutic medicine 2018-06, Vol.15 (6), p.4737-4742 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diallyl trisulfide (DATS) is a natural organic sulfur compound that may be isolated from garlic and has strong anticancer activity. DATS has been demonstrated to upregulate the expression of calreticulin (CRT) in various types of human cancers, which is associated with the prognosis of cancer and its response to therapy. However, whether DATS has the same effect on human osteosarcoma cells is not known. Therefore, in the present study, Saos-2 human osteosarcoma cells were cultured with different concentrations of DATS (0, 25, 50 and 100 µmol/l) for 24 h, or with 50 µmol/l DATS for different time periods (0, 12, 24 and 36 h). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunofluorescent staining were used to detect CRT mRNA and protein in the Saos-2 cells. Exposure to DATS changed the morphology and inhibited the growth of the Saos-2 cells, and its effects appeared to be concentration- and exposure time-dependent. The optimum concentration and exposure time of DATS were 50 µmol/l and 24 h, respectively. The levels of CRT mRNA and protein in the Saos-2 cells were significantly upregulated following exposure to DATS. The upregulation of CRT expression by DATS may be a mechanism underlying the ability of DATS to inhibit the growth of human osteosarcoma Saos-2 cells. |
---|---|
ISSN: | 1792-0981 1792-1015 |
DOI: | 10.3892/etm.2018.6037 |