Loading…

Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes

Elicitins secreted by phytopathogenic Phytophthora spp. are proteinaceous elicitors of plant defense mechanisms and were demonstrated to load, carry, and transfer sterols between membranes. The link between elicitor and sterol-loading properties was assessed with the use of site-directed mutagenesis...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2001-09, Vol.12 (9), p.2825-2834
Main Authors: Osman, H, Vauthrin, S, Mikes, V, Milat, M L, Panabières, F, Marais, A, Brunie, S, Maume, B, Ponchet, M, Blein, J P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elicitins secreted by phytopathogenic Phytophthora spp. are proteinaceous elicitors of plant defense mechanisms and were demonstrated to load, carry, and transfer sterols between membranes. The link between elicitor and sterol-loading properties was assessed with the use of site-directed mutagenesis of the 47 and 87 cryptogein tyrosine residues, postulated to be involved in sterol binding. Mutated cryptogeins were tested for their ability to load sterols, bind to plasma membrane putative receptors, and trigger biological responses. For each mutated elicitin, the chemical characterization of the corresponding complexes with stigmasterol (1:1 stoichiometry) demonstrated their full functionality. However, these proteins were strongly altered in their sterol-loading efficiency, specific binding to high-affinity sites, and activities on tobacco cells. Ligand replacement experiments strongly suggest that the formation of a sterol-elicitin complex is a requisite step before elicitins fasten to specific binding sites. This was confirmed with the use of two sterol-preloaded elicitins. Both more rapidly displaced labeled cryptogein from its specific binding sites than the unloaded proteins. Moreover, the binding kinetics of elicitins are related to their biological effects, which constitutes the first evidence that binding sites could be the biological receptors. The first event involved in elicitin-mediated cell responses is proposed to be the protein loading with a sterol molecule.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.12.9.2825