Loading…

Splice Expression Variation Analysis (SEVA) for inter-tumor heterogeneity of gene isoform usage in cancer

Abstract Motivation Current bioinformatics methods to detect changes in gene isoform usage in distinct phenotypes compare the relative expected isoform usage in phenotypes. These statistics model differences in isoform usage in normal tissues, which have stable regulation of gene splicing. Pathologi...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2018-06, Vol.34 (11), p.1859-1867
Main Authors: Afsari, Bahman, Guo, Theresa, Considine, Michael, Florea, Liliana, Kagohara, Luciane T, Stein-O'Brien, Genevieve L, Kelley, Dylan, Flam, Emily, Zambo, Kristina D, Ha, Patrick K, Geman, Donald, Ochs, Michael F, Califano, Joseph A, Gaykalova, Daria A, Favorov, Alexander V, Fertig, Elana J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation Current bioinformatics methods to detect changes in gene isoform usage in distinct phenotypes compare the relative expected isoform usage in phenotypes. These statistics model differences in isoform usage in normal tissues, which have stable regulation of gene splicing. Pathological conditions, such as cancer, can have broken regulation of splicing that increases the heterogeneity of the expression of splice variants. Inferring events with such differential heterogeneity in gene isoform usage requires new statistical approaches. Results We introduce Splice Expression Variability Analysis (SEVA) to model increased heterogeneity of splice variant usage between conditions (e.g. tumor and normal samples). SEVA uses a rank-based multivariate statistic that compares the variability of junction expression profiles within one condition to the variability within another. Simulated data show that SEVA is unique in modeling heterogeneity of gene isoform usage, and benchmark SEVA's performance against EBSeq, DiffSplice and rMATS that model differential isoform usage instead of heterogeneity. We confirm the accuracy of SEVA in identifying known splice variants in head and neck cancer and perform cross-study validation of novel splice variants. A novel comparison of splice variant heterogeneity between subtypes of head and neck cancer demonstrated unanticipated similarity between the heterogeneity of gene isoform usage in HPV-positive and HPV-negative subtypes and anticipated increased heterogeneity among HPV-negative samples with mutations in genes that regulate the splice variant machinery. These results show that SEVA accurately models differential heterogeneity of gene isoform usage from RNA-seq data. Availability and implementation SEVA is implemented in the R/Bioconductor package GSReg. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/bty004