Loading…

Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis

Objective To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs). Methods We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were c...

Full description

Saved in:
Bibliographic Details
Published in:Health services research 2018-06, Vol.53 (3), p.1919-1956
Main Authors: Redondo‐González, Olga, Tenías, José María, Arias, Ángel, Lucendo, Alfredo J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593
cites cdi_FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593
container_end_page 1956
container_issue 3
container_start_page 1919
container_title Health services research
container_volume 53
creator Redondo‐González, Olga
Tenías, José María
Arias, Ángel
Lucendo, Alfredo J.
description Objective To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs). Methods We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator‐associated pneumonias/events (VAPs/VAEs) and non‐VAPs/VAEs, catheter‐associated urinary tract infections (CAUTIs), and central venous catheter‐related bloodstream infections (CLABSIs). A random‐effects meta‐regression model was constructed. Results Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta‐analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DORICD‐10/ICD‐9‐CM = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias. Conclusions Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD‐10 coding system is also a pending issue.
doi_str_mv 10.1111/1475-6773.12691
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5980352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543612834</galeid><sourcerecordid>A543612834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593</originalsourceid><addsrcrecordid>eNqFk8-O0zAQxiMEYkvhzA1FQkIg0W6cOP84IFVl2VYqWqnLcrUcZ5x45drd2GnpjUfgkXgWngSn7VYtWkFyiDz-fd-MMx7Pe4mCIXLPOcJpPEjSNBqiMMnRI693iDz2ekGA0kGOQnzmPTPmNgiCLMrwU-8szKI8DRPU8359o1KUwm58qkp_DlLQQshurbk_KhdCCWMbasUK_LEuofQ_UUt9rhvf1uBPS1BWcMEcoVWnmWizFJbK3z9-jthdKxonmSoOrAPMB3-k_JtlSa0LX2-MhYVTMpd4JWDtr4Wt_S9gaadWVG6MMNvC9rE5VA0Y06W6337uPeFUGnix__a9m88XX8eTwezqcjoezQYsRREaxEmS0CIPYxwWcVBmJYp4hnmWszzHLGUpBFEOqCw45ThiYcJwSinKOeQ4QnEe9b2PO99lWyygZO7cDZVk2YgFbTZEU0FOd5SoSaVXJM6zIIpDZ_B2b9DouxaMJQthGEhJFejWEJRlSRqjzPWm773-C73VbeMObEgY4BSHKHGHOlAVlUCE4trlZZ0pGcU4SpBzwo4aPEBVoMAVqRVw4cIn_PAB3r0lLAR7UPDuROAYC99tRVtjSHY5-1cxe5ZpKaEC4ho2vjrl3xzxNVBpa6Nlu71Lp-D7I7BojVDdPVFGVLU1u1pO8PMdzhptTAP80EcUkG6wSDdGpBsjsh0sp3h13P4Dfz9JDkh2wNr9n83__Mjk4nq-c_4D-WovJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047421671</pqid></control><display><type>article</type><title>Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Wiley</source><source>PubMed Central</source><creator>Redondo‐González, Olga ; Tenías, José María ; Arias, Ángel ; Lucendo, Alfredo J.</creator><creatorcontrib>Redondo‐González, Olga ; Tenías, José María ; Arias, Ángel ; Lucendo, Alfredo J.</creatorcontrib><description>Objective To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs). Methods We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator‐associated pneumonias/events (VAPs/VAEs) and non‐VAPs/VAEs, catheter‐associated urinary tract infections (CAUTIs), and central venous catheter‐related bloodstream infections (CLABSIs). A random‐effects meta‐regression model was constructed. Results Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta‐analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DORICD‐10/ICD‐9‐CM = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias. Conclusions Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD‐10 coding system is also a pending issue.</description><identifier>ISSN: 0017-9124</identifier><identifier>ISSN: 1475-6773</identifier><identifier>EISSN: 1475-6773</identifier><identifier>DOI: 10.1111/1475-6773.12691</identifier><identifier>PMID: 28397261</identifier><language>eng</language><publisher>United States: Health Research and Educational Trust</publisher><subject>Algorithms ; Analysis ; Bias ; Catheter-Related Infections - epidemiology ; Catheterization ; Catheters ; Chart reviews ; Clinical Coding - standards ; Clostridium Infections - epidemiology ; Coding ; Cross Infection - epidemiology ; Data processing ; Diagnostic systems ; Health aspects ; Hospital infections ; Hospitals ; Humans ; Identification ; Identification methods ; Implants, Artificial ; Incidence ; Infections ; Innovative HSR Methods ; International Classification of Diseases ; Libraries ; Medical instruments ; Meta-analysis ; Nosocomial infection ; Pneumonia ; Pneumonia, Ventilator-Associated - epidemiology ; Prostheses ; Prostheses and implants ; Prosthesis ; Regression Analysis ; Regression models ; Reliability ; Reliability analysis ; Reproducibility of Results ; Sensitivity ; Sensitivity and Specificity ; Surgery ; Surgical instruments ; Surgical Wound Infection - epidemiology ; Surveillance ; Systematic review ; Upgrading ; Urinary tract ; Urinary tract infections ; Validity</subject><ispartof>Health services research, 2018-06, Vol.53 (3), p.1919-1956</ispartof><rights>Health Research and Educational Trust</rights><rights>Health Research and Educational Trust.</rights><rights>COPYRIGHT 2018 Health Research and Educational Trust</rights><rights>COPYRIGHT 2018 Health Research and Educational Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593</citedby><cites>FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593</cites><orcidid>0000-0003-0964-5668 ; 0000-0002-8079-8491 ; 0000-0003-1183-1072 ; 0000-0003-1006-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980352/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980352/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,30999,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28397261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Redondo‐González, Olga</creatorcontrib><creatorcontrib>Tenías, José María</creatorcontrib><creatorcontrib>Arias, Ángel</creatorcontrib><creatorcontrib>Lucendo, Alfredo J.</creatorcontrib><title>Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis</title><title>Health services research</title><addtitle>Health Serv Res</addtitle><description>Objective To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs). Methods We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator‐associated pneumonias/events (VAPs/VAEs) and non‐VAPs/VAEs, catheter‐associated urinary tract infections (CAUTIs), and central venous catheter‐related bloodstream infections (CLABSIs). A random‐effects meta‐regression model was constructed. Results Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta‐analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DORICD‐10/ICD‐9‐CM = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias. Conclusions Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD‐10 coding system is also a pending issue.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bias</subject><subject>Catheter-Related Infections - epidemiology</subject><subject>Catheterization</subject><subject>Catheters</subject><subject>Chart reviews</subject><subject>Clinical Coding - standards</subject><subject>Clostridium Infections - epidemiology</subject><subject>Coding</subject><subject>Cross Infection - epidemiology</subject><subject>Data processing</subject><subject>Diagnostic systems</subject><subject>Health aspects</subject><subject>Hospital infections</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Implants, Artificial</subject><subject>Incidence</subject><subject>Infections</subject><subject>Innovative HSR Methods</subject><subject>International Classification of Diseases</subject><subject>Libraries</subject><subject>Medical instruments</subject><subject>Meta-analysis</subject><subject>Nosocomial infection</subject><subject>Pneumonia</subject><subject>Pneumonia, Ventilator-Associated - epidemiology</subject><subject>Prostheses</subject><subject>Prostheses and implants</subject><subject>Prosthesis</subject><subject>Regression Analysis</subject><subject>Regression models</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reproducibility of Results</subject><subject>Sensitivity</subject><subject>Sensitivity and Specificity</subject><subject>Surgery</subject><subject>Surgical instruments</subject><subject>Surgical Wound Infection - epidemiology</subject><subject>Surveillance</subject><subject>Systematic review</subject><subject>Upgrading</subject><subject>Urinary tract</subject><subject>Urinary tract infections</subject><subject>Validity</subject><issn>0017-9124</issn><issn>1475-6773</issn><issn>1475-6773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNqFk8-O0zAQxiMEYkvhzA1FQkIg0W6cOP84IFVl2VYqWqnLcrUcZ5x45drd2GnpjUfgkXgWngSn7VYtWkFyiDz-fd-MMx7Pe4mCIXLPOcJpPEjSNBqiMMnRI693iDz2ekGA0kGOQnzmPTPmNgiCLMrwU-8szKI8DRPU8359o1KUwm58qkp_DlLQQshurbk_KhdCCWMbasUK_LEuofQ_UUt9rhvf1uBPS1BWcMEcoVWnmWizFJbK3z9-jthdKxonmSoOrAPMB3-k_JtlSa0LX2-MhYVTMpd4JWDtr4Wt_S9gaadWVG6MMNvC9rE5VA0Y06W6337uPeFUGnix__a9m88XX8eTwezqcjoezQYsRREaxEmS0CIPYxwWcVBmJYp4hnmWszzHLGUpBFEOqCw45ThiYcJwSinKOeQ4QnEe9b2PO99lWyygZO7cDZVk2YgFbTZEU0FOd5SoSaVXJM6zIIpDZ_B2b9DouxaMJQthGEhJFejWEJRlSRqjzPWm773-C73VbeMObEgY4BSHKHGHOlAVlUCE4trlZZ0pGcU4SpBzwo4aPEBVoMAVqRVw4cIn_PAB3r0lLAR7UPDuROAYC99tRVtjSHY5-1cxe5ZpKaEC4ho2vjrl3xzxNVBpa6Nlu71Lp-D7I7BojVDdPVFGVLU1u1pO8PMdzhptTAP80EcUkG6wSDdGpBsjsh0sp3h13P4Dfz9JDkh2wNr9n83__Mjk4nq-c_4D-WovJA</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Redondo‐González, Olga</creator><creator>Tenías, José María</creator><creator>Arias, Ángel</creator><creator>Lucendo, Alfredo J.</creator><general>Health Research and Educational Trust</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8GL</scope><scope>7QJ</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0964-5668</orcidid><orcidid>https://orcid.org/0000-0002-8079-8491</orcidid><orcidid>https://orcid.org/0000-0003-1183-1072</orcidid><orcidid>https://orcid.org/0000-0003-1006-0958</orcidid></search><sort><creationdate>201806</creationdate><title>Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis</title><author>Redondo‐González, Olga ; Tenías, José María ; Arias, Ángel ; Lucendo, Alfredo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bias</topic><topic>Catheter-Related Infections - epidemiology</topic><topic>Catheterization</topic><topic>Catheters</topic><topic>Chart reviews</topic><topic>Clinical Coding - standards</topic><topic>Clostridium Infections - epidemiology</topic><topic>Coding</topic><topic>Cross Infection - epidemiology</topic><topic>Data processing</topic><topic>Diagnostic systems</topic><topic>Health aspects</topic><topic>Hospital infections</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Implants, Artificial</topic><topic>Incidence</topic><topic>Infections</topic><topic>Innovative HSR Methods</topic><topic>International Classification of Diseases</topic><topic>Libraries</topic><topic>Medical instruments</topic><topic>Meta-analysis</topic><topic>Nosocomial infection</topic><topic>Pneumonia</topic><topic>Pneumonia, Ventilator-Associated - epidemiology</topic><topic>Prostheses</topic><topic>Prostheses and implants</topic><topic>Prosthesis</topic><topic>Regression Analysis</topic><topic>Regression models</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reproducibility of Results</topic><topic>Sensitivity</topic><topic>Sensitivity and Specificity</topic><topic>Surgery</topic><topic>Surgical instruments</topic><topic>Surgical Wound Infection - epidemiology</topic><topic>Surveillance</topic><topic>Systematic review</topic><topic>Upgrading</topic><topic>Urinary tract</topic><topic>Urinary tract infections</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redondo‐González, Olga</creatorcontrib><creatorcontrib>Tenías, José María</creatorcontrib><creatorcontrib>Arias, Ángel</creatorcontrib><creatorcontrib>Lucendo, Alfredo J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: High School</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health services research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redondo‐González, Olga</au><au>Tenías, José María</au><au>Arias, Ángel</au><au>Lucendo, Alfredo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis</atitle><jtitle>Health services research</jtitle><addtitle>Health Serv Res</addtitle><date>2018-06</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>1919</spage><epage>1956</epage><pages>1919-1956</pages><issn>0017-9124</issn><issn>1475-6773</issn><eissn>1475-6773</eissn><abstract>Objective To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs). Methods We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator‐associated pneumonias/events (VAPs/VAEs) and non‐VAPs/VAEs, catheter‐associated urinary tract infections (CAUTIs), and central venous catheter‐related bloodstream infections (CLABSIs). A random‐effects meta‐regression model was constructed. Results Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta‐analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DORICD‐10/ICD‐9‐CM = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias. Conclusions Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD‐10 coding system is also a pending issue.</abstract><cop>United States</cop><pub>Health Research and Educational Trust</pub><pmid>28397261</pmid><doi>10.1111/1475-6773.12691</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-0964-5668</orcidid><orcidid>https://orcid.org/0000-0002-8079-8491</orcidid><orcidid>https://orcid.org/0000-0003-1183-1072</orcidid><orcidid>https://orcid.org/0000-0003-1006-0958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9124
ispartof Health services research, 2018-06, Vol.53 (3), p.1919-1956
issn 0017-9124
1475-6773
1475-6773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5980352
source Applied Social Sciences Index & Abstracts (ASSIA); Wiley; PubMed Central
subjects Algorithms
Analysis
Bias
Catheter-Related Infections - epidemiology
Catheterization
Catheters
Chart reviews
Clinical Coding - standards
Clostridium Infections - epidemiology
Coding
Cross Infection - epidemiology
Data processing
Diagnostic systems
Health aspects
Hospital infections
Hospitals
Humans
Identification
Identification methods
Implants, Artificial
Incidence
Infections
Innovative HSR Methods
International Classification of Diseases
Libraries
Medical instruments
Meta-analysis
Nosocomial infection
Pneumonia
Pneumonia, Ventilator-Associated - epidemiology
Prostheses
Prostheses and implants
Prosthesis
Regression Analysis
Regression models
Reliability
Reliability analysis
Reproducibility of Results
Sensitivity
Sensitivity and Specificity
Surgery
Surgical instruments
Surgical Wound Infection - epidemiology
Surveillance
Systematic review
Upgrading
Urinary tract
Urinary tract infections
Validity
title Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity%20and%20Reliability%20of%20Administrative%20Coded%20Data%20for%20the%20Identification%20of%20Hospital%E2%80%90Acquired%20Infections:%20An%20Updated%20Systematic%20Review%20with%20Meta%E2%80%90Analysis%20and%20Meta%E2%80%90Regression%20Analysis&rft.jtitle=Health%20services%20research&rft.au=Redondo%E2%80%90Gonz%C3%A1lez,%20Olga&rft.date=2018-06&rft.volume=53&rft.issue=3&rft.spage=1919&rft.epage=1956&rft.pages=1919-1956&rft.issn=0017-9124&rft.eissn=1475-6773&rft_id=info:doi/10.1111/1475-6773.12691&rft_dat=%3Cgale_pubme%3EA543612834%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047421671&rft_id=info:pmid/28397261&rft_galeid=A543612834&rfr_iscdi=true