Loading…
Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis
Objective To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs). Methods We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were c...
Saved in:
Published in: | Health services research 2018-06, Vol.53 (3), p.1919-1956 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593 |
---|---|
cites | cdi_FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593 |
container_end_page | 1956 |
container_issue | 3 |
container_start_page | 1919 |
container_title | Health services research |
container_volume | 53 |
creator | Redondo‐González, Olga Tenías, José María Arias, Ángel Lucendo, Alfredo J. |
description | Objective
To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs).
Methods
We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator‐associated pneumonias/events (VAPs/VAEs) and non‐VAPs/VAEs, catheter‐associated urinary tract infections (CAUTIs), and central venous catheter‐related bloodstream infections (CLABSIs). A random‐effects meta‐regression model was constructed.
Results
Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta‐analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DORICD‐10/ICD‐9‐CM = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias.
Conclusions
Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD‐10 coding system is also a pending issue. |
doi_str_mv | 10.1111/1475-6773.12691 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5980352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543612834</galeid><sourcerecordid>A543612834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593</originalsourceid><addsrcrecordid>eNqFk8-O0zAQxiMEYkvhzA1FQkIg0W6cOP84IFVl2VYqWqnLcrUcZ5x45drd2GnpjUfgkXgWngSn7VYtWkFyiDz-fd-MMx7Pe4mCIXLPOcJpPEjSNBqiMMnRI693iDz2ekGA0kGOQnzmPTPmNgiCLMrwU-8szKI8DRPU8359o1KUwm58qkp_DlLQQshurbk_KhdCCWMbasUK_LEuofQ_UUt9rhvf1uBPS1BWcMEcoVWnmWizFJbK3z9-jthdKxonmSoOrAPMB3-k_JtlSa0LX2-MhYVTMpd4JWDtr4Wt_S9gaadWVG6MMNvC9rE5VA0Y06W6337uPeFUGnix__a9m88XX8eTwezqcjoezQYsRREaxEmS0CIPYxwWcVBmJYp4hnmWszzHLGUpBFEOqCw45ThiYcJwSinKOeQ4QnEe9b2PO99lWyygZO7cDZVk2YgFbTZEU0FOd5SoSaVXJM6zIIpDZ_B2b9DouxaMJQthGEhJFejWEJRlSRqjzPWm773-C73VbeMObEgY4BSHKHGHOlAVlUCE4trlZZ0pGcU4SpBzwo4aPEBVoMAVqRVw4cIn_PAB3r0lLAR7UPDuROAYC99tRVtjSHY5-1cxe5ZpKaEC4ho2vjrl3xzxNVBpa6Nlu71Lp-D7I7BojVDdPVFGVLU1u1pO8PMdzhptTAP80EcUkG6wSDdGpBsjsh0sp3h13P4Dfz9JDkh2wNr9n83__Mjk4nq-c_4D-WovJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047421671</pqid></control><display><type>article</type><title>Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Wiley</source><source>PubMed Central</source><creator>Redondo‐González, Olga ; Tenías, José María ; Arias, Ángel ; Lucendo, Alfredo J.</creator><creatorcontrib>Redondo‐González, Olga ; Tenías, José María ; Arias, Ángel ; Lucendo, Alfredo J.</creatorcontrib><description>Objective
To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs).
Methods
We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator‐associated pneumonias/events (VAPs/VAEs) and non‐VAPs/VAEs, catheter‐associated urinary tract infections (CAUTIs), and central venous catheter‐related bloodstream infections (CLABSIs). A random‐effects meta‐regression model was constructed.
Results
Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta‐analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DORICD‐10/ICD‐9‐CM = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias.
Conclusions
Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD‐10 coding system is also a pending issue.</description><identifier>ISSN: 0017-9124</identifier><identifier>ISSN: 1475-6773</identifier><identifier>EISSN: 1475-6773</identifier><identifier>DOI: 10.1111/1475-6773.12691</identifier><identifier>PMID: 28397261</identifier><language>eng</language><publisher>United States: Health Research and Educational Trust</publisher><subject>Algorithms ; Analysis ; Bias ; Catheter-Related Infections - epidemiology ; Catheterization ; Catheters ; Chart reviews ; Clinical Coding - standards ; Clostridium Infections - epidemiology ; Coding ; Cross Infection - epidemiology ; Data processing ; Diagnostic systems ; Health aspects ; Hospital infections ; Hospitals ; Humans ; Identification ; Identification methods ; Implants, Artificial ; Incidence ; Infections ; Innovative HSR Methods ; International Classification of Diseases ; Libraries ; Medical instruments ; Meta-analysis ; Nosocomial infection ; Pneumonia ; Pneumonia, Ventilator-Associated - epidemiology ; Prostheses ; Prostheses and implants ; Prosthesis ; Regression Analysis ; Regression models ; Reliability ; Reliability analysis ; Reproducibility of Results ; Sensitivity ; Sensitivity and Specificity ; Surgery ; Surgical instruments ; Surgical Wound Infection - epidemiology ; Surveillance ; Systematic review ; Upgrading ; Urinary tract ; Urinary tract infections ; Validity</subject><ispartof>Health services research, 2018-06, Vol.53 (3), p.1919-1956</ispartof><rights>Health Research and Educational Trust</rights><rights>Health Research and Educational Trust.</rights><rights>COPYRIGHT 2018 Health Research and Educational Trust</rights><rights>COPYRIGHT 2018 Health Research and Educational Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593</citedby><cites>FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593</cites><orcidid>0000-0003-0964-5668 ; 0000-0002-8079-8491 ; 0000-0003-1183-1072 ; 0000-0003-1006-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980352/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980352/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,30999,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28397261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Redondo‐González, Olga</creatorcontrib><creatorcontrib>Tenías, José María</creatorcontrib><creatorcontrib>Arias, Ángel</creatorcontrib><creatorcontrib>Lucendo, Alfredo J.</creatorcontrib><title>Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis</title><title>Health services research</title><addtitle>Health Serv Res</addtitle><description>Objective
To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs).
Methods
We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator‐associated pneumonias/events (VAPs/VAEs) and non‐VAPs/VAEs, catheter‐associated urinary tract infections (CAUTIs), and central venous catheter‐related bloodstream infections (CLABSIs). A random‐effects meta‐regression model was constructed.
Results
Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta‐analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DORICD‐10/ICD‐9‐CM = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias.
Conclusions
Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD‐10 coding system is also a pending issue.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bias</subject><subject>Catheter-Related Infections - epidemiology</subject><subject>Catheterization</subject><subject>Catheters</subject><subject>Chart reviews</subject><subject>Clinical Coding - standards</subject><subject>Clostridium Infections - epidemiology</subject><subject>Coding</subject><subject>Cross Infection - epidemiology</subject><subject>Data processing</subject><subject>Diagnostic systems</subject><subject>Health aspects</subject><subject>Hospital infections</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Implants, Artificial</subject><subject>Incidence</subject><subject>Infections</subject><subject>Innovative HSR Methods</subject><subject>International Classification of Diseases</subject><subject>Libraries</subject><subject>Medical instruments</subject><subject>Meta-analysis</subject><subject>Nosocomial infection</subject><subject>Pneumonia</subject><subject>Pneumonia, Ventilator-Associated - epidemiology</subject><subject>Prostheses</subject><subject>Prostheses and implants</subject><subject>Prosthesis</subject><subject>Regression Analysis</subject><subject>Regression models</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reproducibility of Results</subject><subject>Sensitivity</subject><subject>Sensitivity and Specificity</subject><subject>Surgery</subject><subject>Surgical instruments</subject><subject>Surgical Wound Infection - epidemiology</subject><subject>Surveillance</subject><subject>Systematic review</subject><subject>Upgrading</subject><subject>Urinary tract</subject><subject>Urinary tract infections</subject><subject>Validity</subject><issn>0017-9124</issn><issn>1475-6773</issn><issn>1475-6773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNqFk8-O0zAQxiMEYkvhzA1FQkIg0W6cOP84IFVl2VYqWqnLcrUcZ5x45drd2GnpjUfgkXgWngSn7VYtWkFyiDz-fd-MMx7Pe4mCIXLPOcJpPEjSNBqiMMnRI693iDz2ekGA0kGOQnzmPTPmNgiCLMrwU-8szKI8DRPU8359o1KUwm58qkp_DlLQQshurbk_KhdCCWMbasUK_LEuofQ_UUt9rhvf1uBPS1BWcMEcoVWnmWizFJbK3z9-jthdKxonmSoOrAPMB3-k_JtlSa0LX2-MhYVTMpd4JWDtr4Wt_S9gaadWVG6MMNvC9rE5VA0Y06W6337uPeFUGnix__a9m88XX8eTwezqcjoezQYsRREaxEmS0CIPYxwWcVBmJYp4hnmWszzHLGUpBFEOqCw45ThiYcJwSinKOeQ4QnEe9b2PO99lWyygZO7cDZVk2YgFbTZEU0FOd5SoSaVXJM6zIIpDZ_B2b9DouxaMJQthGEhJFejWEJRlSRqjzPWm773-C73VbeMObEgY4BSHKHGHOlAVlUCE4trlZZ0pGcU4SpBzwo4aPEBVoMAVqRVw4cIn_PAB3r0lLAR7UPDuROAYC99tRVtjSHY5-1cxe5ZpKaEC4ho2vjrl3xzxNVBpa6Nlu71Lp-D7I7BojVDdPVFGVLU1u1pO8PMdzhptTAP80EcUkG6wSDdGpBsjsh0sp3h13P4Dfz9JDkh2wNr9n83__Mjk4nq-c_4D-WovJA</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Redondo‐González, Olga</creator><creator>Tenías, José María</creator><creator>Arias, Ángel</creator><creator>Lucendo, Alfredo J.</creator><general>Health Research and Educational Trust</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8GL</scope><scope>7QJ</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0964-5668</orcidid><orcidid>https://orcid.org/0000-0002-8079-8491</orcidid><orcidid>https://orcid.org/0000-0003-1183-1072</orcidid><orcidid>https://orcid.org/0000-0003-1006-0958</orcidid></search><sort><creationdate>201806</creationdate><title>Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis</title><author>Redondo‐González, Olga ; Tenías, José María ; Arias, Ángel ; Lucendo, Alfredo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bias</topic><topic>Catheter-Related Infections - epidemiology</topic><topic>Catheterization</topic><topic>Catheters</topic><topic>Chart reviews</topic><topic>Clinical Coding - standards</topic><topic>Clostridium Infections - epidemiology</topic><topic>Coding</topic><topic>Cross Infection - epidemiology</topic><topic>Data processing</topic><topic>Diagnostic systems</topic><topic>Health aspects</topic><topic>Hospital infections</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Implants, Artificial</topic><topic>Incidence</topic><topic>Infections</topic><topic>Innovative HSR Methods</topic><topic>International Classification of Diseases</topic><topic>Libraries</topic><topic>Medical instruments</topic><topic>Meta-analysis</topic><topic>Nosocomial infection</topic><topic>Pneumonia</topic><topic>Pneumonia, Ventilator-Associated - epidemiology</topic><topic>Prostheses</topic><topic>Prostheses and implants</topic><topic>Prosthesis</topic><topic>Regression Analysis</topic><topic>Regression models</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reproducibility of Results</topic><topic>Sensitivity</topic><topic>Sensitivity and Specificity</topic><topic>Surgery</topic><topic>Surgical instruments</topic><topic>Surgical Wound Infection - epidemiology</topic><topic>Surveillance</topic><topic>Systematic review</topic><topic>Upgrading</topic><topic>Urinary tract</topic><topic>Urinary tract infections</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redondo‐González, Olga</creatorcontrib><creatorcontrib>Tenías, José María</creatorcontrib><creatorcontrib>Arias, Ángel</creatorcontrib><creatorcontrib>Lucendo, Alfredo J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: High School</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health services research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redondo‐González, Olga</au><au>Tenías, José María</au><au>Arias, Ángel</au><au>Lucendo, Alfredo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis</atitle><jtitle>Health services research</jtitle><addtitle>Health Serv Res</addtitle><date>2018-06</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>1919</spage><epage>1956</epage><pages>1919-1956</pages><issn>0017-9124</issn><issn>1475-6773</issn><eissn>1475-6773</eissn><abstract>Objective
To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital‐acquired infections (HAIs).
Methods
We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta‐analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator‐associated pneumonias/events (VAPs/VAEs) and non‐VAPs/VAEs, catheter‐associated urinary tract infections (CAUTIs), and central venous catheter‐related bloodstream infections (CLABSIs). A random‐effects meta‐regression model was constructed.
Results
Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta‐analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DORICD‐10/ICD‐9‐CM = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias.
Conclusions
Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD‐10 coding system is also a pending issue.</abstract><cop>United States</cop><pub>Health Research and Educational Trust</pub><pmid>28397261</pmid><doi>10.1111/1475-6773.12691</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-0964-5668</orcidid><orcidid>https://orcid.org/0000-0002-8079-8491</orcidid><orcidid>https://orcid.org/0000-0003-1183-1072</orcidid><orcidid>https://orcid.org/0000-0003-1006-0958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9124 |
ispartof | Health services research, 2018-06, Vol.53 (3), p.1919-1956 |
issn | 0017-9124 1475-6773 1475-6773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5980352 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Wiley; PubMed Central |
subjects | Algorithms Analysis Bias Catheter-Related Infections - epidemiology Catheterization Catheters Chart reviews Clinical Coding - standards Clostridium Infections - epidemiology Coding Cross Infection - epidemiology Data processing Diagnostic systems Health aspects Hospital infections Hospitals Humans Identification Identification methods Implants, Artificial Incidence Infections Innovative HSR Methods International Classification of Diseases Libraries Medical instruments Meta-analysis Nosocomial infection Pneumonia Pneumonia, Ventilator-Associated - epidemiology Prostheses Prostheses and implants Prosthesis Regression Analysis Regression models Reliability Reliability analysis Reproducibility of Results Sensitivity Sensitivity and Specificity Surgery Surgical instruments Surgical Wound Infection - epidemiology Surveillance Systematic review Upgrading Urinary tract Urinary tract infections Validity |
title | Validity and Reliability of Administrative Coded Data for the Identification of Hospital‐Acquired Infections: An Updated Systematic Review with Meta‐Analysis and Meta‐Regression Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity%20and%20Reliability%20of%20Administrative%20Coded%20Data%20for%20the%20Identification%20of%20Hospital%E2%80%90Acquired%20Infections:%20An%20Updated%20Systematic%20Review%20with%20Meta%E2%80%90Analysis%20and%20Meta%E2%80%90Regression%20Analysis&rft.jtitle=Health%20services%20research&rft.au=Redondo%E2%80%90Gonz%C3%A1lez,%20Olga&rft.date=2018-06&rft.volume=53&rft.issue=3&rft.spage=1919&rft.epage=1956&rft.pages=1919-1956&rft.issn=0017-9124&rft.eissn=1475-6773&rft_id=info:doi/10.1111/1475-6773.12691&rft_dat=%3Cgale_pubme%3EA543612834%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c7131-5666ab92542b50d8d13f84f89c994c7c7e039e1dbfaf43c26c47aa19fe9431593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047421671&rft_id=info:pmid/28397261&rft_galeid=A543612834&rfr_iscdi=true |