Loading…

Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles

The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle’s composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in cont...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2018-02, Vol.114 (4), p.947-957
Main Authors: Vagne, Quentin, Sens, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle’s composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we identify two classes of dynamical behavior that can lead to full maturation of membrane-bound compartments. In the first class, maturation corresponds to the stochastic escape from a steady state in which export is dominated by vesicular exchange, and is very unlikely for large compartments. In the second class, it occurs in a quasi-deterministic fashion and is almost size independent. Whether a system belongs to the first or second class is largely controlled by homotypic fusion.
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2017.12.018