Loading…

Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles

The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle’s composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in cont...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2018-02, Vol.114 (4), p.947-957
Main Authors: Vagne, Quentin, Sens, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-f4073c84e3eeab947736f8bb0a6407ae363aded59430e877aba5bd34734c6ace3
cites cdi_FETCH-LOGICAL-c485t-f4073c84e3eeab947736f8bb0a6407ae363aded59430e877aba5bd34734c6ace3
container_end_page 957
container_issue 4
container_start_page 947
container_title Biophysical journal
container_volume 114
creator Vagne, Quentin
Sens, Pierre
description The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle’s composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we identify two classes of dynamical behavior that can lead to full maturation of membrane-bound compartments. In the first class, maturation corresponds to the stochastic escape from a steady state in which export is dominated by vesicular exchange, and is very unlikely for large compartments. In the second class, it occurs in a quasi-deterministic fashion and is almost size independent. Whether a system belongs to the first or second class is largely controlled by homotypic fusion.
doi_str_mv 10.1016/j.bpj.2017.12.018
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5984994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349517350981</els_id><sourcerecordid>2009570009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-f4073c84e3eeab947736f8bb0a6407ae363aded59430e877aba5bd34734c6ace3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxa2Kii4LH6AXlCM9JB3_S2IhIVWrliJt1UMLV8txJrteZePFTlbw7etlSwUcOFme-c0bvXmEnFMoKNDyclM0u03BgFYFZQXQ-oTMqBQsB6jLV2QGAGXOhZJn5E2MGwDKJNDX5IwpoYBJMSPLh9HbtYmjs9mdb7HPfJfdmXEKZnR-yMzQZt8wOjv1JmTXPxI7rDBzQ7bAvv9VvA8rM6QPxrfktDN9xHfP75x8vbl-XNzmy_vPXxZXy9yKWo55J6DithbIEU2jRFXxsqubBkyZOgZ5yU2LrVSCA9ZVZRojm5aLigtbGot8Tj4ddXdTs8XW4jAG0-tdcFsTfmpvnP67M7i1Xvm9lqoWKsnOycVRYP3P2O3VUh9qwIRilIk9TeyH52XBf58wjnrrok1-k2k_Rc0AlKzSqVVC6RG1wccYsHvRpqAPiemNTonpQ2KaMp0SSzPv__TyMvE7ogR8PAKYLrp3GHS0DgeLrQtoR9169x_5JwSSpxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009570009</pqid></control><display><type>article</type><title>Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles</title><source>PubMed Central</source><creator>Vagne, Quentin ; Sens, Pierre</creator><creatorcontrib>Vagne, Quentin ; Sens, Pierre</creatorcontrib><description>The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle’s composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we identify two classes of dynamical behavior that can lead to full maturation of membrane-bound compartments. In the first class, maturation corresponds to the stochastic escape from a steady state in which export is dominated by vesicular exchange, and is very unlikely for large compartments. In the second class, it occurs in a quasi-deterministic fashion and is almost size independent. Whether a system belongs to the first or second class is largely controlled by homotypic fusion.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2017.12.018</identifier><identifier>PMID: 29490254</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biological Transport ; Cell Biophysics ; Computer Simulation ; Condensed Matter ; Humans ; Intracellular Membranes - physiology ; Membrane Fusion ; Models, Biological ; Organelles - physiology ; Other ; Physics ; Stochastic Processes ; Transport Vesicles - physiology</subject><ispartof>Biophysical journal, 2018-02, Vol.114 (4), p.947-957</ispartof><rights>2017 Biophysical Society</rights><rights>Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 Biophysical Society. 2017 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-f4073c84e3eeab947736f8bb0a6407ae363aded59430e877aba5bd34734c6ace3</citedby><cites>FETCH-LOGICAL-c485t-f4073c84e3eeab947736f8bb0a6407ae363aded59430e877aba5bd34734c6ace3</cites><orcidid>0000-0003-4523-3791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984994/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984994/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29490254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02492124$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vagne, Quentin</creatorcontrib><creatorcontrib>Sens, Pierre</creatorcontrib><title>Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle’s composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we identify two classes of dynamical behavior that can lead to full maturation of membrane-bound compartments. In the first class, maturation corresponds to the stochastic escape from a steady state in which export is dominated by vesicular exchange, and is very unlikely for large compartments. In the second class, it occurs in a quasi-deterministic fashion and is almost size independent. Whether a system belongs to the first or second class is largely controlled by homotypic fusion.</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Cell Biophysics</subject><subject>Computer Simulation</subject><subject>Condensed Matter</subject><subject>Humans</subject><subject>Intracellular Membranes - physiology</subject><subject>Membrane Fusion</subject><subject>Models, Biological</subject><subject>Organelles - physiology</subject><subject>Other</subject><subject>Physics</subject><subject>Stochastic Processes</subject><subject>Transport Vesicles - physiology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxa2Kii4LH6AXlCM9JB3_S2IhIVWrliJt1UMLV8txJrteZePFTlbw7etlSwUcOFme-c0bvXmEnFMoKNDyclM0u03BgFYFZQXQ-oTMqBQsB6jLV2QGAGXOhZJn5E2MGwDKJNDX5IwpoYBJMSPLh9HbtYmjs9mdb7HPfJfdmXEKZnR-yMzQZt8wOjv1JmTXPxI7rDBzQ7bAvv9VvA8rM6QPxrfktDN9xHfP75x8vbl-XNzmy_vPXxZXy9yKWo55J6DithbIEU2jRFXxsqubBkyZOgZ5yU2LrVSCA9ZVZRojm5aLigtbGot8Tj4ddXdTs8XW4jAG0-tdcFsTfmpvnP67M7i1Xvm9lqoWKsnOycVRYP3P2O3VUh9qwIRilIk9TeyH52XBf58wjnrrok1-k2k_Rc0AlKzSqVVC6RG1wccYsHvRpqAPiemNTonpQ2KaMp0SSzPv__TyMvE7ogR8PAKYLrp3GHS0DgeLrQtoR9169x_5JwSSpxM</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Vagne, Quentin</creator><creator>Sens, Pierre</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4523-3791</orcidid></search><sort><creationdate>20180227</creationdate><title>Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles</title><author>Vagne, Quentin ; Sens, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-f4073c84e3eeab947736f8bb0a6407ae363aded59430e877aba5bd34734c6ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Cell Biophysics</topic><topic>Computer Simulation</topic><topic>Condensed Matter</topic><topic>Humans</topic><topic>Intracellular Membranes - physiology</topic><topic>Membrane Fusion</topic><topic>Models, Biological</topic><topic>Organelles - physiology</topic><topic>Other</topic><topic>Physics</topic><topic>Stochastic Processes</topic><topic>Transport Vesicles - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vagne, Quentin</creatorcontrib><creatorcontrib>Sens, Pierre</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vagne, Quentin</au><au>Sens, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>114</volume><issue>4</issue><spage>947</spage><epage>957</epage><pages>947-957</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle’s composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we identify two classes of dynamical behavior that can lead to full maturation of membrane-bound compartments. In the first class, maturation corresponds to the stochastic escape from a steady state in which export is dominated by vesicular exchange, and is very unlikely for large compartments. In the second class, it occurs in a quasi-deterministic fashion and is almost size independent. Whether a system belongs to the first or second class is largely controlled by homotypic fusion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29490254</pmid><doi>10.1016/j.bpj.2017.12.018</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4523-3791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2018-02, Vol.114 (4), p.947-957
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5984994
source PubMed Central
subjects Animals
Biological Transport
Cell Biophysics
Computer Simulation
Condensed Matter
Humans
Intracellular Membranes - physiology
Membrane Fusion
Models, Biological
Organelles - physiology
Other
Physics
Stochastic Processes
Transport Vesicles - physiology
title Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Model%20of%20Maturation%20and%20Vesicular%20Exchange%20in%20Cellular%20Organelles&rft.jtitle=Biophysical%20journal&rft.au=Vagne,%20Quentin&rft.date=2018-02-27&rft.volume=114&rft.issue=4&rft.spage=947&rft.epage=957&rft.pages=947-957&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2017.12.018&rft_dat=%3Cproquest_pubme%3E2009570009%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-f4073c84e3eeab947736f8bb0a6407ae363aded59430e877aba5bd34734c6ace3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009570009&rft_id=info:pmid/29490254&rfr_iscdi=true