Loading…

Evolving the N‐Terminal Domain of Pyrrolysyl‐tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids

By evolving the N‐terminal domain of Methanosarcina mazei pyrrolysyl‐tRNA synthetase (PylRS) that directly interacts with tRNAPyl, a mutant clone displaying improved amber‐suppression efficiency for the genetic incorporation of Nϵ‐(tert‐butoxycarbonyl)‐l‐lysine threefold more than the wild type was...

Full description

Saved in:
Bibliographic Details
Published in:Chembiochem : a European journal of chemical biology 2018-01, Vol.19 (1), p.26-30
Main Authors: Sharma, Vangmayee, Zeng, Yu, Wang, W. Wesley, Qiao, Yuchen, Kurra, Yadagiri, Liu, Wenshe R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5058-f2cf7a17d42f7c708f03eef2bdab1fd013417db8e346ba6509afa35c272c1d633
cites cdi_FETCH-LOGICAL-c5058-f2cf7a17d42f7c708f03eef2bdab1fd013417db8e346ba6509afa35c272c1d633
container_end_page 30
container_issue 1
container_start_page 26
container_title Chembiochem : a European journal of chemical biology
container_volume 19
creator Sharma, Vangmayee
Zeng, Yu
Wang, W. Wesley
Qiao, Yuchen
Kurra, Yadagiri
Liu, Wenshe R.
description By evolving the N‐terminal domain of Methanosarcina mazei pyrrolysyl‐tRNA synthetase (PylRS) that directly interacts with tRNAPyl, a mutant clone displaying improved amber‐suppression efficiency for the genetic incorporation of Nϵ‐(tert‐butoxycarbonyl)‐l‐lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of Nϵ‐acetyl‐l‐lysine and Nϵ‐(4‐azidobenzoxycarbonyl)‐l‐δ,ϵ‐dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N‐terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system‐based noncanonical amino‐acid mutagenesis. Watch the intake: By evolving the N‐terminal domain of pyrrolysyl‐tRNA synthetase (PylRS), mutations that improve the genetic incorporation of Nϵ‐(tertbutoxycarbonyl)‐l‐lysine at the amber codon are identified. These mutations can be directly transferred to PylRS mutants for improved incorporation efficiency of their corresponding noncanonical amino acids.
doi_str_mv 10.1002/cbic.201700268
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5989136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984032826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5058-f2cf7a17d42f7c708f03eef2bdab1fd013417db8e346ba6509afa35c272c1d633</originalsourceid><addsrcrecordid>eNqFkctOGzEUhq2qqEBg22VlqesEX-a6qZQGCpFQqEpYWx6PDUYzPqk9STS7PgLPyJPgkJDSVVc-1vnOZ-v8CH2mZEQJYWeqsmrECM3jJSs-oCOa8HKYZ5x_3NUJY_khOg7hkRBSZpx-QoesjBVJ-BFaX6ygWVl3j7sHjWfPf57m2rfWyQafQyutw2Dwz957aPrQN7Hf_ZqN8W3vIt_JoLEBj6ftwsNK13jqFPgFeNlZeB2dgVPSgbMqGsdRDHisbB1O0IGRTdCnu3OA7n5czCdXw-uby-lkfD1UKUmLoWHK5JLmdcJMrnJSGMK1NqyqZUVNTShPYrMqNE-ySmYpKaWRPFUsZ4rWcQsD9G3rXSyrVtdKu87LRiy8baXvBUgr_u04-yDuYSXSsigpz6Lg607g4fdSh048wtLH_QRByyIhnBVsQ422lPIQgtdm_wIlYhOU2AQl9kHFgS_v_7XH35KJQLkF1rbR_X90YvJ9OvkrfwFstaRv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984032826</pqid></control><display><type>article</type><title>Evolving the N‐Terminal Domain of Pyrrolysyl‐tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sharma, Vangmayee ; Zeng, Yu ; Wang, W. Wesley ; Qiao, Yuchen ; Kurra, Yadagiri ; Liu, Wenshe R.</creator><creatorcontrib>Sharma, Vangmayee ; Zeng, Yu ; Wang, W. Wesley ; Qiao, Yuchen ; Kurra, Yadagiri ; Liu, Wenshe R.</creatorcontrib><description>By evolving the N‐terminal domain of Methanosarcina mazei pyrrolysyl‐tRNA synthetase (PylRS) that directly interacts with tRNAPyl, a mutant clone displaying improved amber‐suppression efficiency for the genetic incorporation of Nϵ‐(tert‐butoxycarbonyl)‐l‐lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of Nϵ‐acetyl‐l‐lysine and Nϵ‐(4‐azidobenzoxycarbonyl)‐l‐δ,ϵ‐dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N‐terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system‐based noncanonical amino‐acid mutagenesis. Watch the intake: By evolving the N‐terminal domain of pyrrolysyl‐tRNA synthetase (PylRS), mutations that improve the genetic incorporation of Nϵ‐(tertbutoxycarbonyl)‐l‐lysine at the amber codon are identified. These mutations can be directly transferred to PylRS mutants for improved incorporation efficiency of their corresponding noncanonical amino acids.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201700268</identifier><identifier>PMID: 29096043</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amber ; amber suppression ; Amino acids ; Amino Acyl-tRNA Synthetases - chemistry ; Amino Acyl-tRNA Synthetases - genetics ; Amino Acyl-tRNA Synthetases - metabolism ; Biological evolution ; Catalysis ; Catalytic Domain ; Efficiency ; gene technology ; Incorporation ; Lysine ; Lysine - analogs &amp; derivatives ; Lysine - metabolism ; Methanosarcina - enzymology ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutants ; Mutation ; noncanonical amino acids ; Protein Biosynthesis ; Substrate Specificity ; tRNA</subject><ispartof>Chembiochem : a European journal of chemical biology, 2018-01, Vol.19 (1), p.26-30</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5058-f2cf7a17d42f7c708f03eef2bdab1fd013417db8e346ba6509afa35c272c1d633</citedby><cites>FETCH-LOGICAL-c5058-f2cf7a17d42f7c708f03eef2bdab1fd013417db8e346ba6509afa35c272c1d633</cites><orcidid>0000-0002-7078-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29096043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Vangmayee</creatorcontrib><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Wang, W. Wesley</creatorcontrib><creatorcontrib>Qiao, Yuchen</creatorcontrib><creatorcontrib>Kurra, Yadagiri</creatorcontrib><creatorcontrib>Liu, Wenshe R.</creatorcontrib><title>Evolving the N‐Terminal Domain of Pyrrolysyl‐tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>By evolving the N‐terminal domain of Methanosarcina mazei pyrrolysyl‐tRNA synthetase (PylRS) that directly interacts with tRNAPyl, a mutant clone displaying improved amber‐suppression efficiency for the genetic incorporation of Nϵ‐(tert‐butoxycarbonyl)‐l‐lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of Nϵ‐acetyl‐l‐lysine and Nϵ‐(4‐azidobenzoxycarbonyl)‐l‐δ,ϵ‐dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N‐terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system‐based noncanonical amino‐acid mutagenesis. Watch the intake: By evolving the N‐terminal domain of pyrrolysyl‐tRNA synthetase (PylRS), mutations that improve the genetic incorporation of Nϵ‐(tertbutoxycarbonyl)‐l‐lysine at the amber codon are identified. These mutations can be directly transferred to PylRS mutants for improved incorporation efficiency of their corresponding noncanonical amino acids.</description><subject>Amber</subject><subject>amber suppression</subject><subject>Amino acids</subject><subject>Amino Acyl-tRNA Synthetases - chemistry</subject><subject>Amino Acyl-tRNA Synthetases - genetics</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Biological evolution</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Efficiency</subject><subject>gene technology</subject><subject>Incorporation</subject><subject>Lysine</subject><subject>Lysine - analogs &amp; derivatives</subject><subject>Lysine - metabolism</subject><subject>Methanosarcina - enzymology</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutants</subject><subject>Mutation</subject><subject>noncanonical amino acids</subject><subject>Protein Biosynthesis</subject><subject>Substrate Specificity</subject><subject>tRNA</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkctOGzEUhq2qqEBg22VlqesEX-a6qZQGCpFQqEpYWx6PDUYzPqk9STS7PgLPyJPgkJDSVVc-1vnOZ-v8CH2mZEQJYWeqsmrECM3jJSs-oCOa8HKYZ5x_3NUJY_khOg7hkRBSZpx-QoesjBVJ-BFaX6ygWVl3j7sHjWfPf57m2rfWyQafQyutw2Dwz957aPrQN7Hf_ZqN8W3vIt_JoLEBj6ftwsNK13jqFPgFeNlZeB2dgVPSgbMqGsdRDHisbB1O0IGRTdCnu3OA7n5czCdXw-uby-lkfD1UKUmLoWHK5JLmdcJMrnJSGMK1NqyqZUVNTShPYrMqNE-ySmYpKaWRPFUsZ4rWcQsD9G3rXSyrVtdKu87LRiy8baXvBUgr_u04-yDuYSXSsigpz6Lg607g4fdSh048wtLH_QRByyIhnBVsQ422lPIQgtdm_wIlYhOU2AQl9kHFgS_v_7XH35KJQLkF1rbR_X90YvJ9OvkrfwFstaRv</recordid><startdate>20180104</startdate><enddate>20180104</enddate><creator>Sharma, Vangmayee</creator><creator>Zeng, Yu</creator><creator>Wang, W. Wesley</creator><creator>Qiao, Yuchen</creator><creator>Kurra, Yadagiri</creator><creator>Liu, Wenshe R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7078-6534</orcidid></search><sort><creationdate>20180104</creationdate><title>Evolving the N‐Terminal Domain of Pyrrolysyl‐tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids</title><author>Sharma, Vangmayee ; Zeng, Yu ; Wang, W. Wesley ; Qiao, Yuchen ; Kurra, Yadagiri ; Liu, Wenshe R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5058-f2cf7a17d42f7c708f03eef2bdab1fd013417db8e346ba6509afa35c272c1d633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amber</topic><topic>amber suppression</topic><topic>Amino acids</topic><topic>Amino Acyl-tRNA Synthetases - chemistry</topic><topic>Amino Acyl-tRNA Synthetases - genetics</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Biological evolution</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Efficiency</topic><topic>gene technology</topic><topic>Incorporation</topic><topic>Lysine</topic><topic>Lysine - analogs &amp; derivatives</topic><topic>Lysine - metabolism</topic><topic>Methanosarcina - enzymology</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutants</topic><topic>Mutation</topic><topic>noncanonical amino acids</topic><topic>Protein Biosynthesis</topic><topic>Substrate Specificity</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Vangmayee</creatorcontrib><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Wang, W. Wesley</creatorcontrib><creatorcontrib>Qiao, Yuchen</creatorcontrib><creatorcontrib>Kurra, Yadagiri</creatorcontrib><creatorcontrib>Liu, Wenshe R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Vangmayee</au><au>Zeng, Yu</au><au>Wang, W. Wesley</au><au>Qiao, Yuchen</au><au>Kurra, Yadagiri</au><au>Liu, Wenshe R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolving the N‐Terminal Domain of Pyrrolysyl‐tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2018-01-04</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>26</spage><epage>30</epage><pages>26-30</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>By evolving the N‐terminal domain of Methanosarcina mazei pyrrolysyl‐tRNA synthetase (PylRS) that directly interacts with tRNAPyl, a mutant clone displaying improved amber‐suppression efficiency for the genetic incorporation of Nϵ‐(tert‐butoxycarbonyl)‐l‐lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of Nϵ‐acetyl‐l‐lysine and Nϵ‐(4‐azidobenzoxycarbonyl)‐l‐δ,ϵ‐dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N‐terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system‐based noncanonical amino‐acid mutagenesis. Watch the intake: By evolving the N‐terminal domain of pyrrolysyl‐tRNA synthetase (PylRS), mutations that improve the genetic incorporation of Nϵ‐(tertbutoxycarbonyl)‐l‐lysine at the amber codon are identified. These mutations can be directly transferred to PylRS mutants for improved incorporation efficiency of their corresponding noncanonical amino acids.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29096043</pmid><doi>10.1002/cbic.201700268</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7078-6534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2018-01, Vol.19 (1), p.26-30
issn 1439-4227
1439-7633
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5989136
source Wiley-Blackwell Read & Publish Collection
subjects Amber
amber suppression
Amino acids
Amino Acyl-tRNA Synthetases - chemistry
Amino Acyl-tRNA Synthetases - genetics
Amino Acyl-tRNA Synthetases - metabolism
Biological evolution
Catalysis
Catalytic Domain
Efficiency
gene technology
Incorporation
Lysine
Lysine - analogs & derivatives
Lysine - metabolism
Methanosarcina - enzymology
Mutagenesis
Mutagenesis, Site-Directed
Mutants
Mutation
noncanonical amino acids
Protein Biosynthesis
Substrate Specificity
tRNA
title Evolving the N‐Terminal Domain of Pyrrolysyl‐tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolving%20the%20N%E2%80%90Terminal%20Domain%20of%20Pyrrolysyl%E2%80%90tRNA%20Synthetase%20for%20Improved%20Incorporation%20of%20Noncanonical%20Amino%20Acids&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Sharma,%20Vangmayee&rft.date=2018-01-04&rft.volume=19&rft.issue=1&rft.spage=26&rft.epage=30&rft.pages=26-30&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201700268&rft_dat=%3Cproquest_pubme%3E1984032826%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5058-f2cf7a17d42f7c708f03eef2bdab1fd013417db8e346ba6509afa35c272c1d633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984032826&rft_id=info:pmid/29096043&rfr_iscdi=true