Loading…
Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney) and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers
During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationsh...
Saved in:
Published in: | BioMed research international 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c499t-ce56c74b250390fa710f9b734587ed68b7f8432306adfe80c82a9661c6d35ae63 |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-ce56c74b250390fa710f9b734587ed68b7f8432306adfe80c82a9661c6d35ae63 |
container_end_page | 11 |
container_issue | 2018 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2018 |
creator | Hinkelbein, Jochen Boehm, Lennert Kleinbrahm, Kathrin Drinhaus, Hendrik Cirillo, Fabrizio Iovino, Ivan Hohn, Andreas De Robertis, Edoardo |
description | During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis. |
doi_str_mv | 10.1155/2018/3576157 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5994327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621799343</galeid><sourcerecordid>A621799343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-ce56c74b250390fa710f9b734587ed68b7f8432306adfe80c82a9661c6d35ae63</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpjTOyxKWIXeqP2IkvlbbloxWVumrhbM0mk61LYi92UrT_iR-J0122wAlfPNI8evxaM1n2ktF3jEl5zCkrj4UsFJPFk2yfC5ZPFcvZ010txF52GOMdTadkimr1PNvjWmvOhN7Pfp5ab13jQwe9raAlMwftOtpIfEOuwhLc9Bpb6LEmR-cIoZ-Q0wDWTcilvccwIeBq8tnWDtdvHuobDENH5sH36DtbkffQA-k9uajR9bZZb1rWkWtcDklsvSNz6HsMLj4I5qmdyBTlBldjkJSwg_ANQ3yRPWugjXi4vQ-yrx8_fDk7n15efbo4m11Oq1zrflqhVFWRL7ikQtMGCkYbvShELssCa1UuiqbMBRdUQd1gSauSg1aKVaoWElCJg-xk410Niw7rKuUJ0JpVsCnI2niw5u-Os7dm6e-N1DqJiyQ42gqC_z5g7E1nY4VtCw79EA2nqhS5KOWIvv4HvfNDSEMYKVlQrjlXj9QSWjTjwNK71Sg1M8VZoXXSJWqyoargYwzY7CIzasZ9MeO-mO2-JPzVn9_cwb-3IwFvN8CtdTX8sP-pw8RgA48041JzLX4B99LSBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057029226</pqid></control><display><type>article</type><title>Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney) and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Hinkelbein, Jochen ; Boehm, Lennert ; Kleinbrahm, Kathrin ; Drinhaus, Hendrik ; Cirillo, Fabrizio ; Iovino, Ivan ; Hohn, Andreas ; De Robertis, Edoardo</creator><contributor>Tinelli, Andrea ; Andrea Tinelli</contributor><creatorcontrib>Hinkelbein, Jochen ; Boehm, Lennert ; Kleinbrahm, Kathrin ; Drinhaus, Hendrik ; Cirillo, Fabrizio ; Iovino, Ivan ; Hohn, Andreas ; De Robertis, Edoardo ; Tinelli, Andrea ; Andrea Tinelli</creatorcontrib><description>During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2018/3576157</identifier><identifier>PMID: 29992139</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Animals ; Biological markers ; Biomarkers ; Blood ; Blood proteins ; Brain ; Brain - metabolism ; Cluster analysis ; Critical care ; Energy metabolism ; Gene expression ; Gene Expression Regulation ; Genomics ; Heart ; Humans ; Infection ; Inflammation ; Inflammatory response ; Kidney - metabolism ; Kidneys ; Lipoproteins ; Liver ; Liver - metabolism ; Male ; Mass spectrometry ; Medical research ; Medicine, Experimental ; Metabolism ; Myocardium ; Organs ; Protein expression ; Proteins ; Proteome ; Proteomics ; Rats ; Rats, Wistar ; Regeneration ; Scientific imaging ; Sepsis ; Sepsis - metabolism ; Serum proteins ; Software ; Studies</subject><ispartof>BioMed research international, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Andreas Hohn et al.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>Copyright © 2018 Andreas Hohn et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2018 Andreas Hohn et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-ce56c74b250390fa710f9b734587ed68b7f8432306adfe80c82a9661c6d35ae63</citedby><cites>FETCH-LOGICAL-c499t-ce56c74b250390fa710f9b734587ed68b7f8432306adfe80c82a9661c6d35ae63</cites><orcidid>0000-0003-3585-9459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2057029226/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2057029226?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29992139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tinelli, Andrea</contributor><contributor>Andrea Tinelli</contributor><creatorcontrib>Hinkelbein, Jochen</creatorcontrib><creatorcontrib>Boehm, Lennert</creatorcontrib><creatorcontrib>Kleinbrahm, Kathrin</creatorcontrib><creatorcontrib>Drinhaus, Hendrik</creatorcontrib><creatorcontrib>Cirillo, Fabrizio</creatorcontrib><creatorcontrib>Iovino, Ivan</creatorcontrib><creatorcontrib>Hohn, Andreas</creatorcontrib><creatorcontrib>De Robertis, Edoardo</creatorcontrib><title>Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney) and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Blood proteins</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cluster analysis</subject><subject>Critical care</subject><subject>Energy metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genomics</subject><subject>Heart</subject><subject>Humans</subject><subject>Infection</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Kidney - metabolism</subject><subject>Kidneys</subject><subject>Lipoproteins</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Metabolism</subject><subject>Myocardium</subject><subject>Organs</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Regeneration</subject><subject>Scientific imaging</subject><subject>Sepsis</subject><subject>Sepsis - metabolism</subject><subject>Serum proteins</subject><subject>Software</subject><subject>Studies</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkk1v1DAQhiMEolXpjTOyxKWIXeqP2IkvlbbloxWVumrhbM0mk61LYi92UrT_iR-J0122wAlfPNI8evxaM1n2ktF3jEl5zCkrj4UsFJPFk2yfC5ZPFcvZ010txF52GOMdTadkimr1PNvjWmvOhN7Pfp5ab13jQwe9raAlMwftOtpIfEOuwhLc9Bpb6LEmR-cIoZ-Q0wDWTcilvccwIeBq8tnWDtdvHuobDENH5sH36DtbkffQA-k9uajR9bZZb1rWkWtcDklsvSNz6HsMLj4I5qmdyBTlBldjkJSwg_ANQ3yRPWugjXi4vQ-yrx8_fDk7n15efbo4m11Oq1zrflqhVFWRL7ikQtMGCkYbvShELssCa1UuiqbMBRdUQd1gSauSg1aKVaoWElCJg-xk410Niw7rKuUJ0JpVsCnI2niw5u-Os7dm6e-N1DqJiyQ42gqC_z5g7E1nY4VtCw79EA2nqhS5KOWIvv4HvfNDSEMYKVlQrjlXj9QSWjTjwNK71Sg1M8VZoXXSJWqyoargYwzY7CIzasZ9MeO-mO2-JPzVn9_cwb-3IwFvN8CtdTX8sP-pw8RgA48041JzLX4B99LSBA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hinkelbein, Jochen</creator><creator>Boehm, Lennert</creator><creator>Kleinbrahm, Kathrin</creator><creator>Drinhaus, Hendrik</creator><creator>Cirillo, Fabrizio</creator><creator>Iovino, Ivan</creator><creator>Hohn, Andreas</creator><creator>De Robertis, Edoardo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3585-9459</orcidid></search><sort><creationdate>20180101</creationdate><title>Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney) and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers</title><author>Hinkelbein, Jochen ; Boehm, Lennert ; Kleinbrahm, Kathrin ; Drinhaus, Hendrik ; Cirillo, Fabrizio ; Iovino, Ivan ; Hohn, Andreas ; De Robertis, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-ce56c74b250390fa710f9b734587ed68b7f8432306adfe80c82a9661c6d35ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Blood proteins</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cluster analysis</topic><topic>Critical care</topic><topic>Energy metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genomics</topic><topic>Heart</topic><topic>Humans</topic><topic>Infection</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Kidney - metabolism</topic><topic>Kidneys</topic><topic>Lipoproteins</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Metabolism</topic><topic>Myocardium</topic><topic>Organs</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Regeneration</topic><topic>Scientific imaging</topic><topic>Sepsis</topic><topic>Sepsis - metabolism</topic><topic>Serum proteins</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinkelbein, Jochen</creatorcontrib><creatorcontrib>Boehm, Lennert</creatorcontrib><creatorcontrib>Kleinbrahm, Kathrin</creatorcontrib><creatorcontrib>Drinhaus, Hendrik</creatorcontrib><creatorcontrib>Cirillo, Fabrizio</creatorcontrib><creatorcontrib>Iovino, Ivan</creatorcontrib><creatorcontrib>Hohn, Andreas</creatorcontrib><creatorcontrib>De Robertis, Edoardo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinkelbein, Jochen</au><au>Boehm, Lennert</au><au>Kleinbrahm, Kathrin</au><au>Drinhaus, Hendrik</au><au>Cirillo, Fabrizio</au><au>Iovino, Ivan</au><au>Hohn, Andreas</au><au>De Robertis, Edoardo</au><au>Tinelli, Andrea</au><au>Andrea Tinelli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney) and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29992139</pmid><doi>10.1155/2018/3576157</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3585-9459</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2018-01, Vol.2018 (2018), p.1-11 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5994327 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Analysis Animals Biological markers Biomarkers Blood Blood proteins Brain Brain - metabolism Cluster analysis Critical care Energy metabolism Gene expression Gene Expression Regulation Genomics Heart Humans Infection Inflammation Inflammatory response Kidney - metabolism Kidneys Lipoproteins Liver Liver - metabolism Male Mass spectrometry Medical research Medicine, Experimental Metabolism Myocardium Organs Protein expression Proteins Proteome Proteomics Rats Rats, Wistar Regeneration Scientific imaging Sepsis Sepsis - metabolism Serum proteins Software Studies |
title | Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney) and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatical%20Analysis%20of%20Organ-Related%20(Heart,%20Brain,%20Liver,%20and%20Kidney)%20and%20Serum%20Proteomic%20Data%20to%20Identify%20Protein%20Regulation%20Patterns%20and%20Potential%20Sepsis%20Biomarkers&rft.jtitle=BioMed%20research%20international&rft.au=Hinkelbein,%20Jochen&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2018/3576157&rft_dat=%3Cgale_pubme%3EA621799343%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-ce56c74b250390fa710f9b734587ed68b7f8432306adfe80c82a9661c6d35ae63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2057029226&rft_id=info:pmid/29992139&rft_galeid=A621799343&rfr_iscdi=true |