Loading…

PEITH(Θ): perfecting experiments with information theory in Python with GPU support

Abstract Motivation Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2018-04, Vol.34 (7), p.1249-1250
Main Authors: Dony, Leander, Mackerodt, Jonas, Ward, Scott, Filippi, Sarah, Stumpf, Michael P H, Liepe, Juliane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-94bef78ec3ba9e86d2ac4d197ba9288c7edbfa7672d25e99669e648ed4f3b7a3
cites cdi_FETCH-LOGICAL-c452t-94bef78ec3ba9e86d2ac4d197ba9288c7edbfa7672d25e99669e648ed4f3b7a3
container_end_page 1250
container_issue 7
container_start_page 1249
container_title Bioinformatics
container_volume 34
creator Dony, Leander
Mackerodt, Jonas
Ward, Scott
Filippi, Sarah
Stumpf, Michael P H
Liepe, Juliane
description Abstract Motivation Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and general advances in quantitative systems biology, methods that inform us about the information content that a given experiment carries about the question we want to answer, become crucial. Results PEITH(Θ) is a general purpose, Python framework for experimental design in systems biology. PEITH(Θ) uses Bayesian inference and information theory in order to derive which experiments are most informative in order to estimate all model parameters and/or perform model predictions. Availability and implementation https://github.com/MichaelPHStumpf/Peitho
doi_str_mv 10.1093/bioinformatics/btx776
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5998942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btx776</oup_id><sourcerecordid>1976002409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-94bef78ec3ba9e86d2ac4d197ba9288c7edbfa7672d25e99669e648ed4f3b7a3</originalsourceid><addsrcrecordid>eNqNUctO4zAUtUYg6HT4hEFZwiLgOI4fs0AaoQ4gVaKLztpynBtq1MYZ22HaP-Gr-CYMhQp2rO7r3HOP7kHoZ4HPCizL89o627XOr3S0JpzXcc05-4ZGBWU4J7iSeykvGc-pwOUh-h7CPcZVQSk9QIdEEiIKQUZoPpvczK9Pnh5Pf2U9-BZMtN1dButU2BV0MWT_bVxku1uuy-ICnN-kVjbbxEVqvCKuZn-zMPS98_EH2m_1MsDRWxyj-Z_J_PI6n95e3Vz-nuaGViTmktbQcgGmrLUEwRqiDW0KyVNJhDAcmrrVnHHSkAqkZEwCowIa2pY11-UYXWxp-6FeQWOSWq-Xqk_Ctd8op636POnsQt25B1VJKSQlieDkjcC7fwOEqFY2GFgudQduCCpJYRgTmv49RtUWarwLwUO7O1Ng9WKI-myI2hqS9o4_atxtvTuQAHgLcEP_Rc5n6q2hlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976002409</pqid></control><display><type>article</type><title>PEITH(Θ): perfecting experiments with information theory in Python with GPU support</title><source>Oxford Open</source><source>PubMed Central</source><creator>Dony, Leander ; Mackerodt, Jonas ; Ward, Scott ; Filippi, Sarah ; Stumpf, Michael P H ; Liepe, Juliane</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Dony, Leander ; Mackerodt, Jonas ; Ward, Scott ; Filippi, Sarah ; Stumpf, Michael P H ; Liepe, Juliane ; Wren, Jonathan</creatorcontrib><description>Abstract Motivation Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and general advances in quantitative systems biology, methods that inform us about the information content that a given experiment carries about the question we want to answer, become crucial. Results PEITH(Θ) is a general purpose, Python framework for experimental design in systems biology. PEITH(Θ) uses Bayesian inference and information theory in order to derive which experiments are most informative in order to estimate all model parameters and/or perform model predictions. Availability and implementation https://github.com/MichaelPHStumpf/Peitho</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btx776</identifier><identifier>PMID: 29228182</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes ; Bayes Theorem ; Information Theory ; Software ; Systems Biology - methods</subject><ispartof>Bioinformatics, 2018-04, Vol.34 (7), p.1249-1250</ispartof><rights>The Author 2017. Published by Oxford University Press. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-94bef78ec3ba9e86d2ac4d197ba9288c7edbfa7672d25e99669e648ed4f3b7a3</citedby><cites>FETCH-LOGICAL-c452t-94bef78ec3ba9e86d2ac4d197ba9288c7edbfa7672d25e99669e648ed4f3b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998942/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998942/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29228182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Dony, Leander</creatorcontrib><creatorcontrib>Mackerodt, Jonas</creatorcontrib><creatorcontrib>Ward, Scott</creatorcontrib><creatorcontrib>Filippi, Sarah</creatorcontrib><creatorcontrib>Stumpf, Michael P H</creatorcontrib><creatorcontrib>Liepe, Juliane</creatorcontrib><title>PEITH(Θ): perfecting experiments with information theory in Python with GPU support</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and general advances in quantitative systems biology, methods that inform us about the information content that a given experiment carries about the question we want to answer, become crucial. Results PEITH(Θ) is a general purpose, Python framework for experimental design in systems biology. PEITH(Θ) uses Bayesian inference and information theory in order to derive which experiments are most informative in order to estimate all model parameters and/or perform model predictions. Availability and implementation https://github.com/MichaelPHStumpf/Peitho</description><subject>Applications Notes</subject><subject>Bayes Theorem</subject><subject>Information Theory</subject><subject>Software</subject><subject>Systems Biology - methods</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNUctO4zAUtUYg6HT4hEFZwiLgOI4fs0AaoQ4gVaKLztpynBtq1MYZ22HaP-Gr-CYMhQp2rO7r3HOP7kHoZ4HPCizL89o627XOr3S0JpzXcc05-4ZGBWU4J7iSeykvGc-pwOUh-h7CPcZVQSk9QIdEEiIKQUZoPpvczK9Pnh5Pf2U9-BZMtN1dButU2BV0MWT_bVxku1uuy-ICnN-kVjbbxEVqvCKuZn-zMPS98_EH2m_1MsDRWxyj-Z_J_PI6n95e3Vz-nuaGViTmktbQcgGmrLUEwRqiDW0KyVNJhDAcmrrVnHHSkAqkZEwCowIa2pY11-UYXWxp-6FeQWOSWq-Xqk_Ctd8op636POnsQt25B1VJKSQlieDkjcC7fwOEqFY2GFgudQduCCpJYRgTmv49RtUWarwLwUO7O1Ng9WKI-myI2hqS9o4_atxtvTuQAHgLcEP_Rc5n6q2hlQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dony, Leander</creator><creator>Mackerodt, Jonas</creator><creator>Ward, Scott</creator><creator>Filippi, Sarah</creator><creator>Stumpf, Michael P H</creator><creator>Liepe, Juliane</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180401</creationdate><title>PEITH(Θ): perfecting experiments with information theory in Python with GPU support</title><author>Dony, Leander ; Mackerodt, Jonas ; Ward, Scott ; Filippi, Sarah ; Stumpf, Michael P H ; Liepe, Juliane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-94bef78ec3ba9e86d2ac4d197ba9288c7edbfa7672d25e99669e648ed4f3b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications Notes</topic><topic>Bayes Theorem</topic><topic>Information Theory</topic><topic>Software</topic><topic>Systems Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dony, Leander</creatorcontrib><creatorcontrib>Mackerodt, Jonas</creatorcontrib><creatorcontrib>Ward, Scott</creatorcontrib><creatorcontrib>Filippi, Sarah</creatorcontrib><creatorcontrib>Stumpf, Michael P H</creatorcontrib><creatorcontrib>Liepe, Juliane</creatorcontrib><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dony, Leander</au><au>Mackerodt, Jonas</au><au>Ward, Scott</au><au>Filippi, Sarah</au><au>Stumpf, Michael P H</au><au>Liepe, Juliane</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEITH(Θ): perfecting experiments with information theory in Python with GPU support</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>34</volume><issue>7</issue><spage>1249</spage><epage>1250</epage><pages>1249-1250</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and general advances in quantitative systems biology, methods that inform us about the information content that a given experiment carries about the question we want to answer, become crucial. Results PEITH(Θ) is a general purpose, Python framework for experimental design in systems biology. PEITH(Θ) uses Bayesian inference and information theory in order to derive which experiments are most informative in order to estimate all model parameters and/or perform model predictions. Availability and implementation https://github.com/MichaelPHStumpf/Peitho</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29228182</pmid><doi>10.1093/bioinformatics/btx776</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2018-04, Vol.34 (7), p.1249-1250
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5998942
source Oxford Open; PubMed Central
subjects Applications Notes
Bayes Theorem
Information Theory
Software
Systems Biology - methods
title PEITH(Θ): perfecting experiments with information theory in Python with GPU support
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEITH(%CE%98):%20perfecting%20experiments%20with%20information%20theory%20in%20Python%20with%20GPU%20support&rft.jtitle=Bioinformatics&rft.au=Dony,%20Leander&rft.date=2018-04-01&rft.volume=34&rft.issue=7&rft.spage=1249&rft.epage=1250&rft.pages=1249-1250&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btx776&rft_dat=%3Cproquest_pubme%3E1976002409%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-94bef78ec3ba9e86d2ac4d197ba9288c7edbfa7672d25e99669e648ed4f3b7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1976002409&rft_id=info:pmid/29228182&rft_oup_id=10.1093/bioinformatics/btx776&rfr_iscdi=true