Loading…

Graphs of study contributions and covariate distributions for network meta‐regression

Background Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results...

Full description

Saved in:
Bibliographic Details
Published in:Research synthesis methods 2018-06, Vol.9 (2), p.243-260
Main Authors: Donegan, Sarah, Dias, Sofia, Tudur‐Smith, Catrin, Marinho, Valeria, Welton, Nicky J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63
cites cdi_FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63
container_end_page 260
container_issue 2
container_start_page 243
container_title Research synthesis methods
container_volume 9
creator Donegan, Sarah
Dias, Sofia
Tudur‐Smith, Catrin
Marinho, Valeria
Welton, Nicky J.
description Background Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation. Methods We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR plot, and heat‐NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year. Results For the malaria dataset, no contributing trials had an average age between 7–25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954–1959 for most comparisons therefore, within this range, results would be extrapolated. Conclusions Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results.
doi_str_mv 10.1002/jrsm.1292
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6001528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1256237</ericid><sourcerecordid>2049905028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63</originalsourceid><addsrcrecordid>eNp1kc1OGzEUha2qqCDIog_QaqRuYBHinxl7vEFCCCgIhERbdWk5nuvgMDMO9gwoOx6BZ-yT4BCIUiS8seXv6NxjH4S-ErxPMKajaYjNPqGSfkJbRBRySMtSfF6dhdxEgxinOC0mOeXiC9qkkomEyy309zTo2U3MvM1i11fzzPi2C27cd863MdNtlW7udXC6g6xycY1ZH7IWugcfbrMGOv3v8SnAJECMCe-gDavrCIPXfRv9OTn-ffRzeHF1enZ0eDE0OS_okORYiNLkuWWSjMtcW6Y1ppWwmPG8EGXBaVVayxivqNEGhB5bqDChjAM3nG2jg6XvrB83UBlI6XWtZsE1OsyV1079T1p3oyb-XnGMSUHLZLD7ahD8XQ-xU42LBupat-D7qIiUDGMh-UL645106vvQpucpinMpcYFfDPeWKhN8jAHsKgzBatGYWjSmFo0l7ff19CvlWz9J8G0pgODMCh-fE5o-honER0v-4GqYfzxJnV__unwZ-QwIfKzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049905028</pqid></control><display><type>article</type><title>Graphs of study contributions and covariate distributions for network meta‐regression</title><source>Wiley</source><source>ERIC</source><creator>Donegan, Sarah ; Dias, Sofia ; Tudur‐Smith, Catrin ; Marinho, Valeria ; Welton, Nicky J.</creator><creatorcontrib>Donegan, Sarah ; Dias, Sofia ; Tudur‐Smith, Catrin ; Marinho, Valeria ; Welton, Nicky J.</creatorcontrib><description>Background Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation. Methods We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR plot, and heat‐NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year. Results For the malaria dataset, no contributing trials had an average age between 7–25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954–1959 for most comparisons therefore, within this range, results would be extrapolated. Conclusions Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results.</description><identifier>ISSN: 1759-2879</identifier><identifier>EISSN: 1759-2887</identifier><identifier>DOI: 10.1002/jrsm.1292</identifier><identifier>PMID: 29377598</identifier><language>eng</language><publisher>England: Wiley-Blackwell</publisher><subject>Adolescent ; Adult ; Algorithms ; Child ; Child, Preschool ; contribution ; Datasets ; Dental caries ; Dental Caries - prevention &amp; control ; Extrapolation ; extrapolationtreatment by covariate interactionsweight ; Fluorides ; Fluorides - chemistry ; Graphs ; Hot Temperature ; Humans ; Infant ; Infant, Newborn ; Interpolation ; Malaria ; Malaria - therapy ; Meta Analysis ; meta‐regression ; Network Meta-Analysis ; Networks ; NMR ; Nuclear magnetic resonance ; Phosphates ; Randomization ; Regression (Statistics) ; Regression Analysis ; Statistical Distributions ; Statistics as Topic ; Young Adult</subject><ispartof>Research synthesis methods, 2018-06, Vol.9 (2), p.243-260</ispartof><rights>2018 The Authors. Published by John Wiley &amp; Sons Ltd.</rights><rights>2018 The Authors. Research Synthesis Methods Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63</citedby><cites>FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63</cites><orcidid>0000-0002-2172-0221 ; 0000-0003-1709-2290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1256237$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29377598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donegan, Sarah</creatorcontrib><creatorcontrib>Dias, Sofia</creatorcontrib><creatorcontrib>Tudur‐Smith, Catrin</creatorcontrib><creatorcontrib>Marinho, Valeria</creatorcontrib><creatorcontrib>Welton, Nicky J.</creatorcontrib><title>Graphs of study contributions and covariate distributions for network meta‐regression</title><title>Research synthesis methods</title><addtitle>Res Synth Methods</addtitle><description>Background Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation. Methods We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR plot, and heat‐NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year. Results For the malaria dataset, no contributing trials had an average age between 7–25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954–1959 for most comparisons therefore, within this range, results would be extrapolated. Conclusions Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>contribution</subject><subject>Datasets</subject><subject>Dental caries</subject><subject>Dental Caries - prevention &amp; control</subject><subject>Extrapolation</subject><subject>extrapolationtreatment by covariate interactionsweight</subject><subject>Fluorides</subject><subject>Fluorides - chemistry</subject><subject>Graphs</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Interpolation</subject><subject>Malaria</subject><subject>Malaria - therapy</subject><subject>Meta Analysis</subject><subject>meta‐regression</subject><subject>Network Meta-Analysis</subject><subject>Networks</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phosphates</subject><subject>Randomization</subject><subject>Regression (Statistics)</subject><subject>Regression Analysis</subject><subject>Statistical Distributions</subject><subject>Statistics as Topic</subject><subject>Young Adult</subject><issn>1759-2879</issn><issn>1759-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>7SW</sourceid><recordid>eNp1kc1OGzEUha2qqCDIog_QaqRuYBHinxl7vEFCCCgIhERbdWk5nuvgMDMO9gwoOx6BZ-yT4BCIUiS8seXv6NxjH4S-ErxPMKajaYjNPqGSfkJbRBRySMtSfF6dhdxEgxinOC0mOeXiC9qkkomEyy309zTo2U3MvM1i11fzzPi2C27cd863MdNtlW7udXC6g6xycY1ZH7IWugcfbrMGOv3v8SnAJECMCe-gDavrCIPXfRv9OTn-ffRzeHF1enZ0eDE0OS_okORYiNLkuWWSjMtcW6Y1ppWwmPG8EGXBaVVayxivqNEGhB5bqDChjAM3nG2jg6XvrB83UBlI6XWtZsE1OsyV1079T1p3oyb-XnGMSUHLZLD7ahD8XQ-xU42LBupat-D7qIiUDGMh-UL645106vvQpucpinMpcYFfDPeWKhN8jAHsKgzBatGYWjSmFo0l7ff19CvlWz9J8G0pgODMCh-fE5o-honER0v-4GqYfzxJnV__unwZ-QwIfKzs</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Donegan, Sarah</creator><creator>Dias, Sofia</creator><creator>Tudur‐Smith, Catrin</creator><creator>Marinho, Valeria</creator><creator>Welton, Nicky J.</creator><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2172-0221</orcidid><orcidid>https://orcid.org/0000-0003-1709-2290</orcidid></search><sort><creationdate>201806</creationdate><title>Graphs of study contributions and covariate distributions for network meta‐regression</title><author>Donegan, Sarah ; Dias, Sofia ; Tudur‐Smith, Catrin ; Marinho, Valeria ; Welton, Nicky J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>contribution</topic><topic>Datasets</topic><topic>Dental caries</topic><topic>Dental Caries - prevention &amp; control</topic><topic>Extrapolation</topic><topic>extrapolationtreatment by covariate interactionsweight</topic><topic>Fluorides</topic><topic>Fluorides - chemistry</topic><topic>Graphs</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Interpolation</topic><topic>Malaria</topic><topic>Malaria - therapy</topic><topic>Meta Analysis</topic><topic>meta‐regression</topic><topic>Network Meta-Analysis</topic><topic>Networks</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phosphates</topic><topic>Randomization</topic><topic>Regression (Statistics)</topic><topic>Regression Analysis</topic><topic>Statistical Distributions</topic><topic>Statistics as Topic</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donegan, Sarah</creatorcontrib><creatorcontrib>Dias, Sofia</creatorcontrib><creatorcontrib>Tudur‐Smith, Catrin</creatorcontrib><creatorcontrib>Marinho, Valeria</creatorcontrib><creatorcontrib>Welton, Nicky J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Research synthesis methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donegan, Sarah</au><au>Dias, Sofia</au><au>Tudur‐Smith, Catrin</au><au>Marinho, Valeria</au><au>Welton, Nicky J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1256237</ericid><atitle>Graphs of study contributions and covariate distributions for network meta‐regression</atitle><jtitle>Research synthesis methods</jtitle><addtitle>Res Synth Methods</addtitle><date>2018-06</date><risdate>2018</risdate><volume>9</volume><issue>2</issue><spage>243</spage><epage>260</epage><pages>243-260</pages><issn>1759-2879</issn><eissn>1759-2887</eissn><abstract>Background Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation. Methods We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR plot, and heat‐NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year. Results For the malaria dataset, no contributing trials had an average age between 7–25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954–1959 for most comparisons therefore, within this range, results would be extrapolated. Conclusions Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results.</abstract><cop>England</cop><pub>Wiley-Blackwell</pub><pmid>29377598</pmid><doi>10.1002/jrsm.1292</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2172-0221</orcidid><orcidid>https://orcid.org/0000-0003-1709-2290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-2879
ispartof Research synthesis methods, 2018-06, Vol.9 (2), p.243-260
issn 1759-2879
1759-2887
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6001528
source Wiley; ERIC
subjects Adolescent
Adult
Algorithms
Child
Child, Preschool
contribution
Datasets
Dental caries
Dental Caries - prevention & control
Extrapolation
extrapolationtreatment by covariate interactionsweight
Fluorides
Fluorides - chemistry
Graphs
Hot Temperature
Humans
Infant
Infant, Newborn
Interpolation
Malaria
Malaria - therapy
Meta Analysis
meta‐regression
Network Meta-Analysis
Networks
NMR
Nuclear magnetic resonance
Phosphates
Randomization
Regression (Statistics)
Regression Analysis
Statistical Distributions
Statistics as Topic
Young Adult
title Graphs of study contributions and covariate distributions for network meta‐regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphs%20of%20study%20contributions%20and%20covariate%20distributions%20for%20network%20meta%E2%80%90regression&rft.jtitle=Research%20synthesis%20methods&rft.au=Donegan,%20Sarah&rft.date=2018-06&rft.volume=9&rft.issue=2&rft.spage=243&rft.epage=260&rft.pages=243-260&rft.issn=1759-2879&rft.eissn=1759-2887&rft_id=info:doi/10.1002/jrsm.1292&rft_dat=%3Cproquest_pubme%3E2049905028%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2049905028&rft_id=info:pmid/29377598&rft_ericid=EJ1256237&rfr_iscdi=true