Loading…
Graphs of study contributions and covariate distributions for network meta‐regression
Background Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results...
Saved in:
Published in: | Research synthesis methods 2018-06, Vol.9 (2), p.243-260 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63 |
container_end_page | 260 |
container_issue | 2 |
container_start_page | 243 |
container_title | Research synthesis methods |
container_volume | 9 |
creator | Donegan, Sarah Dias, Sofia Tudur‐Smith, Catrin Marinho, Valeria Welton, Nicky J. |
description | Background
Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation.
Methods
We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR plot, and heat‐NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year.
Results
For the malaria dataset, no contributing trials had an average age between 7–25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954–1959 for most comparisons therefore, within this range, results would be extrapolated.
Conclusions
Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results. |
doi_str_mv | 10.1002/jrsm.1292 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6001528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1256237</ericid><sourcerecordid>2049905028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63</originalsourceid><addsrcrecordid>eNp1kc1OGzEUha2qqCDIog_QaqRuYBHinxl7vEFCCCgIhERbdWk5nuvgMDMO9gwoOx6BZ-yT4BCIUiS8seXv6NxjH4S-ErxPMKajaYjNPqGSfkJbRBRySMtSfF6dhdxEgxinOC0mOeXiC9qkkomEyy309zTo2U3MvM1i11fzzPi2C27cd863MdNtlW7udXC6g6xycY1ZH7IWugcfbrMGOv3v8SnAJECMCe-gDavrCIPXfRv9OTn-ffRzeHF1enZ0eDE0OS_okORYiNLkuWWSjMtcW6Y1ppWwmPG8EGXBaVVayxivqNEGhB5bqDChjAM3nG2jg6XvrB83UBlI6XWtZsE1OsyV1079T1p3oyb-XnGMSUHLZLD7ahD8XQ-xU42LBupat-D7qIiUDGMh-UL645106vvQpucpinMpcYFfDPeWKhN8jAHsKgzBatGYWjSmFo0l7ff19CvlWz9J8G0pgODMCh-fE5o-honER0v-4GqYfzxJnV__unwZ-QwIfKzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049905028</pqid></control><display><type>article</type><title>Graphs of study contributions and covariate distributions for network meta‐regression</title><source>Wiley</source><source>ERIC</source><creator>Donegan, Sarah ; Dias, Sofia ; Tudur‐Smith, Catrin ; Marinho, Valeria ; Welton, Nicky J.</creator><creatorcontrib>Donegan, Sarah ; Dias, Sofia ; Tudur‐Smith, Catrin ; Marinho, Valeria ; Welton, Nicky J.</creatorcontrib><description>Background
Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation.
Methods
We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR plot, and heat‐NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year.
Results
For the malaria dataset, no contributing trials had an average age between 7–25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954–1959 for most comparisons therefore, within this range, results would be extrapolated.
Conclusions
Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results.</description><identifier>ISSN: 1759-2879</identifier><identifier>EISSN: 1759-2887</identifier><identifier>DOI: 10.1002/jrsm.1292</identifier><identifier>PMID: 29377598</identifier><language>eng</language><publisher>England: Wiley-Blackwell</publisher><subject>Adolescent ; Adult ; Algorithms ; Child ; Child, Preschool ; contribution ; Datasets ; Dental caries ; Dental Caries - prevention & control ; Extrapolation ; extrapolationtreatment by covariate interactionsweight ; Fluorides ; Fluorides - chemistry ; Graphs ; Hot Temperature ; Humans ; Infant ; Infant, Newborn ; Interpolation ; Malaria ; Malaria - therapy ; Meta Analysis ; meta‐regression ; Network Meta-Analysis ; Networks ; NMR ; Nuclear magnetic resonance ; Phosphates ; Randomization ; Regression (Statistics) ; Regression Analysis ; Statistical Distributions ; Statistics as Topic ; Young Adult</subject><ispartof>Research synthesis methods, 2018-06, Vol.9 (2), p.243-260</ispartof><rights>2018 The Authors. Published by John Wiley & Sons Ltd.</rights><rights>2018 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63</citedby><cites>FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63</cites><orcidid>0000-0002-2172-0221 ; 0000-0003-1709-2290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1256237$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29377598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donegan, Sarah</creatorcontrib><creatorcontrib>Dias, Sofia</creatorcontrib><creatorcontrib>Tudur‐Smith, Catrin</creatorcontrib><creatorcontrib>Marinho, Valeria</creatorcontrib><creatorcontrib>Welton, Nicky J.</creatorcontrib><title>Graphs of study contributions and covariate distributions for network meta‐regression</title><title>Research synthesis methods</title><addtitle>Res Synth Methods</addtitle><description>Background
Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation.
Methods
We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR plot, and heat‐NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year.
Results
For the malaria dataset, no contributing trials had an average age between 7–25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954–1959 for most comparisons therefore, within this range, results would be extrapolated.
Conclusions
Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>contribution</subject><subject>Datasets</subject><subject>Dental caries</subject><subject>Dental Caries - prevention & control</subject><subject>Extrapolation</subject><subject>extrapolationtreatment by covariate interactionsweight</subject><subject>Fluorides</subject><subject>Fluorides - chemistry</subject><subject>Graphs</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Interpolation</subject><subject>Malaria</subject><subject>Malaria - therapy</subject><subject>Meta Analysis</subject><subject>meta‐regression</subject><subject>Network Meta-Analysis</subject><subject>Networks</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phosphates</subject><subject>Randomization</subject><subject>Regression (Statistics)</subject><subject>Regression Analysis</subject><subject>Statistical Distributions</subject><subject>Statistics as Topic</subject><subject>Young Adult</subject><issn>1759-2879</issn><issn>1759-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>7SW</sourceid><recordid>eNp1kc1OGzEUha2qqCDIog_QaqRuYBHinxl7vEFCCCgIhERbdWk5nuvgMDMO9gwoOx6BZ-yT4BCIUiS8seXv6NxjH4S-ErxPMKajaYjNPqGSfkJbRBRySMtSfF6dhdxEgxinOC0mOeXiC9qkkomEyy309zTo2U3MvM1i11fzzPi2C27cd863MdNtlW7udXC6g6xycY1ZH7IWugcfbrMGOv3v8SnAJECMCe-gDavrCIPXfRv9OTn-ffRzeHF1enZ0eDE0OS_okORYiNLkuWWSjMtcW6Y1ppWwmPG8EGXBaVVayxivqNEGhB5bqDChjAM3nG2jg6XvrB83UBlI6XWtZsE1OsyV1079T1p3oyb-XnGMSUHLZLD7ahD8XQ-xU42LBupat-D7qIiUDGMh-UL645106vvQpucpinMpcYFfDPeWKhN8jAHsKgzBatGYWjSmFo0l7ff19CvlWz9J8G0pgODMCh-fE5o-honER0v-4GqYfzxJnV__unwZ-QwIfKzs</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Donegan, Sarah</creator><creator>Dias, Sofia</creator><creator>Tudur‐Smith, Catrin</creator><creator>Marinho, Valeria</creator><creator>Welton, Nicky J.</creator><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2172-0221</orcidid><orcidid>https://orcid.org/0000-0003-1709-2290</orcidid></search><sort><creationdate>201806</creationdate><title>Graphs of study contributions and covariate distributions for network meta‐regression</title><author>Donegan, Sarah ; Dias, Sofia ; Tudur‐Smith, Catrin ; Marinho, Valeria ; Welton, Nicky J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>contribution</topic><topic>Datasets</topic><topic>Dental caries</topic><topic>Dental Caries - prevention & control</topic><topic>Extrapolation</topic><topic>extrapolationtreatment by covariate interactionsweight</topic><topic>Fluorides</topic><topic>Fluorides - chemistry</topic><topic>Graphs</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Interpolation</topic><topic>Malaria</topic><topic>Malaria - therapy</topic><topic>Meta Analysis</topic><topic>meta‐regression</topic><topic>Network Meta-Analysis</topic><topic>Networks</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phosphates</topic><topic>Randomization</topic><topic>Regression (Statistics)</topic><topic>Regression Analysis</topic><topic>Statistical Distributions</topic><topic>Statistics as Topic</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donegan, Sarah</creatorcontrib><creatorcontrib>Dias, Sofia</creatorcontrib><creatorcontrib>Tudur‐Smith, Catrin</creatorcontrib><creatorcontrib>Marinho, Valeria</creatorcontrib><creatorcontrib>Welton, Nicky J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Research synthesis methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donegan, Sarah</au><au>Dias, Sofia</au><au>Tudur‐Smith, Catrin</au><au>Marinho, Valeria</au><au>Welton, Nicky J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1256237</ericid><atitle>Graphs of study contributions and covariate distributions for network meta‐regression</atitle><jtitle>Research synthesis methods</jtitle><addtitle>Res Synth Methods</addtitle><date>2018-06</date><risdate>2018</risdate><volume>9</volume><issue>2</issue><spage>243</spage><epage>260</epage><pages>243-260</pages><issn>1759-2879</issn><eissn>1759-2887</eissn><abstract>Background
Meta‐regression results must be interpreted taking into account the range of covariate values of the contributing studies. Results based on interpolation or extrapolation may be unreliable. In network meta‐regression (NMR) models, which include covariates in network meta‐analyses, results are estimated using direct and indirect evidence; therefore, it may be unclear which studies and covariate values contribute to which result. We propose graphs to help understand which trials and covariate values contribute to each NMR result and to highlight extrapolation or interpolation.
Methods
We introduce methods to calculate the contribution that each trial and covariate value makes to each result and compare them with existing methods. We show how to construct graphs including a network covariate distribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR plot, and heat‐NMR plot. We demonstrate the methods using a dataset with treatments for malaria using the covariate average age and a dataset of topical fluoride interventions for preventing dental caries using the covariate randomisation year.
Results
For the malaria dataset, no contributing trials had an average age between 7–25 years and therefore results were interpolated within this range. For the fluoride dataset, there are no contributing trials randomised between 1954–1959 for most comparisons therefore, within this range, results would be extrapolated.
Conclusions
Even in a fully connected network, an NMR result may be estimated from trials with a narrower covariate range than the range of the whole dataset. Calculating contributions and graphically displaying them aids interpretation of NMR result by highlighting extrapolated or interpolated results.</abstract><cop>England</cop><pub>Wiley-Blackwell</pub><pmid>29377598</pmid><doi>10.1002/jrsm.1292</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2172-0221</orcidid><orcidid>https://orcid.org/0000-0003-1709-2290</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-2879 |
ispartof | Research synthesis methods, 2018-06, Vol.9 (2), p.243-260 |
issn | 1759-2879 1759-2887 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6001528 |
source | Wiley; ERIC |
subjects | Adolescent Adult Algorithms Child Child, Preschool contribution Datasets Dental caries Dental Caries - prevention & control Extrapolation extrapolationtreatment by covariate interactionsweight Fluorides Fluorides - chemistry Graphs Hot Temperature Humans Infant Infant, Newborn Interpolation Malaria Malaria - therapy Meta Analysis meta‐regression Network Meta-Analysis Networks NMR Nuclear magnetic resonance Phosphates Randomization Regression (Statistics) Regression Analysis Statistical Distributions Statistics as Topic Young Adult |
title | Graphs of study contributions and covariate distributions for network meta‐regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphs%20of%20study%20contributions%20and%20covariate%20distributions%20for%20network%20meta%E2%80%90regression&rft.jtitle=Research%20synthesis%20methods&rft.au=Donegan,%20Sarah&rft.date=2018-06&rft.volume=9&rft.issue=2&rft.spage=243&rft.epage=260&rft.pages=243-260&rft.issn=1759-2879&rft.eissn=1759-2887&rft_id=info:doi/10.1002/jrsm.1292&rft_dat=%3Cproquest_pubme%3E2049905028%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4652-140778c44f391b84af3aa02d7f0364578562d8ff336d2cace7abfed01236e6c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2049905028&rft_id=info:pmid/29377598&rft_ericid=EJ1256237&rfr_iscdi=true |