Loading…
Measure and model a 3-D space-variant PSF for fluorescence microscopy image deblurring
Conventional deconvolution methods assume that the microscopy system is spatially invariant, introducing considerable errors. We developed a method to more precisely estimate space-variant point-spread functions from sparse measurements. To this end, a space-variant version of deblurring algorithm w...
Saved in:
Published in: | Optics express 2018-05, Vol.26 (11), p.14375-14391 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional deconvolution methods assume that the microscopy system is spatially invariant, introducing considerable errors. We developed a method to more precisely estimate space-variant point-spread functions from sparse measurements. To this end, a space-variant version of deblurring algorithm was developed and combined with a total-variation regularization. Validation with both simulation and real data showed that our PSF model is more accurate than the piecewise-invariant model and the blending model. Comparing with the orthogonal basis decomposition based PSF model, our proposed model also performed with a considerable improvement. We also evaluated the proposed deblurring algorithm. Our new deblurring algorithm showed a significantly better signal-to-noise ratio and higher image quality than those of the conventional space-invariant algorithm. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.014375 |