Loading…

Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations

Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an aut...

Full description

Saved in:
Bibliographic Details
Published in:Physiological reports 2018-06, Vol.6 (12), p.e13715-n/a
Main Authors: Fearn, Amy, Allison, Benjamin, Rice, Sarah J., Edwards, Noel, Halbritter, Jan, Bourgeois, Soline, Pastor‐Arroyo, Eva M., Hildebrandt, Friedhelm, Tasic, Velibor, Wagner, Carsten A., Hernando, Nati, Sayer, John A., Werner, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3
cites cdi_FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3
container_end_page n/a
container_issue 12
container_start_page e13715
container_title Physiological reports
container_volume 6
creator Fearn, Amy
Allison, Benjamin
Rice, Sarah J.
Edwards, Noel
Halbritter, Jan
Bourgeois, Soline
Pastor‐Arroyo, Eva M.
Hildebrandt, Friedhelm
Tasic, Velibor
Wagner, Carsten A.
Hernando, Nati
Sayer, John A.
Werner, Andreas
description Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an autosomal dominant trait. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Patient A had a single heterozygous pathogenic missense mutation (p.I456N) in SLC34A1, consistent with the autosomal dominant pattern of renal stone disease in this family. Patient B, with an autosomal recessive pattern of disease, was compound heterozygous for SLC34A1 variants; a missense variant (p.R512C) together with a relatively common in‐frame deletion p.V91A97del7 (91del7). Xenopus oocyte and renal (HKC‐8) cell line transfection studies of the variants revealed limited cell surface localization, consistent with trafficking defects. Co‐expression of wild‐type and I456N and 91del7 appeared to cause intracellular retention in HKC‐8, whereas the R512C mutant had a less dominant effect. Expression in Xenopus oocytes failed to demonstrate a significant dominant negative effect for I456N and R512C; however, a negative impact of 91del7 on [32P]phosphate transport was found. In conclusion, we have investigated pathogenic alleles of SLC34A1 which contribute to both autosomal dominant and autosomal recessive renal stone disease. Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal tubulopathy, and hypophosphatemic nephrolithiasis. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Here, we investigate using oocyte and cell transfection studies the underlying pathogenic alleles of SLC34A1.
doi_str_mv 10.14814/phy2.13715
format article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6010730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PHY213715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdBbNGevEvumrqzH9nkIpSgViwoqKCnZbPZNCtJNmRbpf_etNGiF0_DzLzzDDwInQKeAouBXbblhkyBCuAHaEwwhzAG8TpCE-_fMcaAKU0wO0IjkiSEMZ6M0X1a2cZqVV0EmXW6NPXQqCYPWrUqXc_01lVuuZ33Y1X1vQ9cETwtUspmENTrlVpZ1_gTdFioypvJdz1GLzfXz-k8XDzc3qWzRagZJDyk3EQUEmOSjOCc0liogmhquKI8pxloApoKDZHScWwilUPEWYFjIQQlOsnpMboauO06q02uTbPqVCXbztaq20inrPy7aWwpl-5DRr0CQXEPOB8AunPed6bY3wKWO5Vyq1LuVPbps9_v9tkfiX2ADIFPW5nNfyz5OH8jA_ULP9-BVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Fearn, Amy ; Allison, Benjamin ; Rice, Sarah J. ; Edwards, Noel ; Halbritter, Jan ; Bourgeois, Soline ; Pastor‐Arroyo, Eva M. ; Hildebrandt, Friedhelm ; Tasic, Velibor ; Wagner, Carsten A. ; Hernando, Nati ; Sayer, John A. ; Werner, Andreas</creator><creatorcontrib>Fearn, Amy ; Allison, Benjamin ; Rice, Sarah J. ; Edwards, Noel ; Halbritter, Jan ; Bourgeois, Soline ; Pastor‐Arroyo, Eva M. ; Hildebrandt, Friedhelm ; Tasic, Velibor ; Wagner, Carsten A. ; Hernando, Nati ; Sayer, John A. ; Werner, Andreas</creatorcontrib><description>Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an autosomal dominant trait. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Patient A had a single heterozygous pathogenic missense mutation (p.I456N) in SLC34A1, consistent with the autosomal dominant pattern of renal stone disease in this family. Patient B, with an autosomal recessive pattern of disease, was compound heterozygous for SLC34A1 variants; a missense variant (p.R512C) together with a relatively common in‐frame deletion p.V91A97del7 (91del7). Xenopus oocyte and renal (HKC‐8) cell line transfection studies of the variants revealed limited cell surface localization, consistent with trafficking defects. Co‐expression of wild‐type and I456N and 91del7 appeared to cause intracellular retention in HKC‐8, whereas the R512C mutant had a less dominant effect. Expression in Xenopus oocytes failed to demonstrate a significant dominant negative effect for I456N and R512C; however, a negative impact of 91del7 on [32P]phosphate transport was found. In conclusion, we have investigated pathogenic alleles of SLC34A1 which contribute to both autosomal dominant and autosomal recessive renal stone disease. Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal tubulopathy, and hypophosphatemic nephrolithiasis. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Here, we investigate using oocyte and cell transfection studies the underlying pathogenic alleles of SLC34A1.</description><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.13715</identifier><identifier>PMID: 29924459</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Adult ; Case Report ; Case Reports ; Computer Simulation ; Endocrine and Metabolic Conditons, Disorders and Treatments ; Epithelial cell ; Fanconi syndrome ; Genetic Conditions Disorders and Treatments ; Humans ; Hypophosphatemia - genetics ; Hypophosphatemia - metabolism ; Infant ; Male ; metabolic acidosis ; Mutation ; nephrolithiasis ; Nephrolithiasis - genetics ; Nephrolithiasis - metabolism ; Phenotype ; phosphate ; Renal Conditions, Disorders and Treatments ; SLC34A1 ; Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics ; Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism ; Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology</subject><ispartof>Physiological reports, 2018-06, Vol.6 (12), p.e13715-n/a</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.</rights><rights>2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3</citedby><cites>FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3</cites><orcidid>0000-0003-1881-3782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010730/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010730/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,27924,27925,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29924459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fearn, Amy</creatorcontrib><creatorcontrib>Allison, Benjamin</creatorcontrib><creatorcontrib>Rice, Sarah J.</creatorcontrib><creatorcontrib>Edwards, Noel</creatorcontrib><creatorcontrib>Halbritter, Jan</creatorcontrib><creatorcontrib>Bourgeois, Soline</creatorcontrib><creatorcontrib>Pastor‐Arroyo, Eva M.</creatorcontrib><creatorcontrib>Hildebrandt, Friedhelm</creatorcontrib><creatorcontrib>Tasic, Velibor</creatorcontrib><creatorcontrib>Wagner, Carsten A.</creatorcontrib><creatorcontrib>Hernando, Nati</creatorcontrib><creatorcontrib>Sayer, John A.</creatorcontrib><creatorcontrib>Werner, Andreas</creatorcontrib><title>Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations</title><title>Physiological reports</title><addtitle>Physiol Rep</addtitle><description>Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an autosomal dominant trait. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Patient A had a single heterozygous pathogenic missense mutation (p.I456N) in SLC34A1, consistent with the autosomal dominant pattern of renal stone disease in this family. Patient B, with an autosomal recessive pattern of disease, was compound heterozygous for SLC34A1 variants; a missense variant (p.R512C) together with a relatively common in‐frame deletion p.V91A97del7 (91del7). Xenopus oocyte and renal (HKC‐8) cell line transfection studies of the variants revealed limited cell surface localization, consistent with trafficking defects. Co‐expression of wild‐type and I456N and 91del7 appeared to cause intracellular retention in HKC‐8, whereas the R512C mutant had a less dominant effect. Expression in Xenopus oocytes failed to demonstrate a significant dominant negative effect for I456N and R512C; however, a negative impact of 91del7 on [32P]phosphate transport was found. In conclusion, we have investigated pathogenic alleles of SLC34A1 which contribute to both autosomal dominant and autosomal recessive renal stone disease. Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal tubulopathy, and hypophosphatemic nephrolithiasis. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Here, we investigate using oocyte and cell transfection studies the underlying pathogenic alleles of SLC34A1.</description><subject>Adult</subject><subject>Case Report</subject><subject>Case Reports</subject><subject>Computer Simulation</subject><subject>Endocrine and Metabolic Conditons, Disorders and Treatments</subject><subject>Epithelial cell</subject><subject>Fanconi syndrome</subject><subject>Genetic Conditions Disorders and Treatments</subject><subject>Humans</subject><subject>Hypophosphatemia - genetics</subject><subject>Hypophosphatemia - metabolism</subject><subject>Infant</subject><subject>Male</subject><subject>metabolic acidosis</subject><subject>Mutation</subject><subject>nephrolithiasis</subject><subject>Nephrolithiasis - genetics</subject><subject>Nephrolithiasis - metabolism</subject><subject>Phenotype</subject><subject>phosphate</subject><subject>Renal Conditions, Disorders and Treatments</subject><subject>SLC34A1</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology</subject><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kE1Lw0AQhhdBbNGevEvumrqzH9nkIpSgViwoqKCnZbPZNCtJNmRbpf_etNGiF0_DzLzzDDwInQKeAouBXbblhkyBCuAHaEwwhzAG8TpCE-_fMcaAKU0wO0IjkiSEMZ6M0X1a2cZqVV0EmXW6NPXQqCYPWrUqXc_01lVuuZ33Y1X1vQ9cETwtUspmENTrlVpZ1_gTdFioypvJdz1GLzfXz-k8XDzc3qWzRagZJDyk3EQUEmOSjOCc0liogmhquKI8pxloApoKDZHScWwilUPEWYFjIQQlOsnpMboauO06q02uTbPqVCXbztaq20inrPy7aWwpl-5DRr0CQXEPOB8AunPed6bY3wKWO5Vyq1LuVPbps9_v9tkfiX2ADIFPW5nNfyz5OH8jA_ULP9-BVQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Fearn, Amy</creator><creator>Allison, Benjamin</creator><creator>Rice, Sarah J.</creator><creator>Edwards, Noel</creator><creator>Halbritter, Jan</creator><creator>Bourgeois, Soline</creator><creator>Pastor‐Arroyo, Eva M.</creator><creator>Hildebrandt, Friedhelm</creator><creator>Tasic, Velibor</creator><creator>Wagner, Carsten A.</creator><creator>Hernando, Nati</creator><creator>Sayer, John A.</creator><creator>Werner, Andreas</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1881-3782</orcidid></search><sort><creationdate>201806</creationdate><title>Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations</title><author>Fearn, Amy ; Allison, Benjamin ; Rice, Sarah J. ; Edwards, Noel ; Halbritter, Jan ; Bourgeois, Soline ; Pastor‐Arroyo, Eva M. ; Hildebrandt, Friedhelm ; Tasic, Velibor ; Wagner, Carsten A. ; Hernando, Nati ; Sayer, John A. ; Werner, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Case Report</topic><topic>Case Reports</topic><topic>Computer Simulation</topic><topic>Endocrine and Metabolic Conditons, Disorders and Treatments</topic><topic>Epithelial cell</topic><topic>Fanconi syndrome</topic><topic>Genetic Conditions Disorders and Treatments</topic><topic>Humans</topic><topic>Hypophosphatemia - genetics</topic><topic>Hypophosphatemia - metabolism</topic><topic>Infant</topic><topic>Male</topic><topic>metabolic acidosis</topic><topic>Mutation</topic><topic>nephrolithiasis</topic><topic>Nephrolithiasis - genetics</topic><topic>Nephrolithiasis - metabolism</topic><topic>Phenotype</topic><topic>phosphate</topic><topic>Renal Conditions, Disorders and Treatments</topic><topic>SLC34A1</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fearn, Amy</creatorcontrib><creatorcontrib>Allison, Benjamin</creatorcontrib><creatorcontrib>Rice, Sarah J.</creatorcontrib><creatorcontrib>Edwards, Noel</creatorcontrib><creatorcontrib>Halbritter, Jan</creatorcontrib><creatorcontrib>Bourgeois, Soline</creatorcontrib><creatorcontrib>Pastor‐Arroyo, Eva M.</creatorcontrib><creatorcontrib>Hildebrandt, Friedhelm</creatorcontrib><creatorcontrib>Tasic, Velibor</creatorcontrib><creatorcontrib>Wagner, Carsten A.</creatorcontrib><creatorcontrib>Hernando, Nati</creatorcontrib><creatorcontrib>Sayer, John A.</creatorcontrib><creatorcontrib>Werner, Andreas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fearn, Amy</au><au>Allison, Benjamin</au><au>Rice, Sarah J.</au><au>Edwards, Noel</au><au>Halbritter, Jan</au><au>Bourgeois, Soline</au><au>Pastor‐Arroyo, Eva M.</au><au>Hildebrandt, Friedhelm</au><au>Tasic, Velibor</au><au>Wagner, Carsten A.</au><au>Hernando, Nati</au><au>Sayer, John A.</au><au>Werner, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations</atitle><jtitle>Physiological reports</jtitle><addtitle>Physiol Rep</addtitle><date>2018-06</date><risdate>2018</risdate><volume>6</volume><issue>12</issue><spage>e13715</spage><epage>n/a</epage><pages>e13715-n/a</pages><eissn>2051-817X</eissn><abstract>Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an autosomal dominant trait. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Patient A had a single heterozygous pathogenic missense mutation (p.I456N) in SLC34A1, consistent with the autosomal dominant pattern of renal stone disease in this family. Patient B, with an autosomal recessive pattern of disease, was compound heterozygous for SLC34A1 variants; a missense variant (p.R512C) together with a relatively common in‐frame deletion p.V91A97del7 (91del7). Xenopus oocyte and renal (HKC‐8) cell line transfection studies of the variants revealed limited cell surface localization, consistent with trafficking defects. Co‐expression of wild‐type and I456N and 91del7 appeared to cause intracellular retention in HKC‐8, whereas the R512C mutant had a less dominant effect. Expression in Xenopus oocytes failed to demonstrate a significant dominant negative effect for I456N and R512C; however, a negative impact of 91del7 on [32P]phosphate transport was found. In conclusion, we have investigated pathogenic alleles of SLC34A1 which contribute to both autosomal dominant and autosomal recessive renal stone disease. Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal tubulopathy, and hypophosphatemic nephrolithiasis. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Here, we investigate using oocyte and cell transfection studies the underlying pathogenic alleles of SLC34A1.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>29924459</pmid><doi>10.14814/phy2.13715</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1881-3782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2051-817X
ispartof Physiological reports, 2018-06, Vol.6 (12), p.e13715-n/a
issn 2051-817X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6010730
source Wiley Online Library Open Access; Publicly Available Content (ProQuest); PubMed Central
subjects Adult
Case Report
Case Reports
Computer Simulation
Endocrine and Metabolic Conditons, Disorders and Treatments
Epithelial cell
Fanconi syndrome
Genetic Conditions Disorders and Treatments
Humans
Hypophosphatemia - genetics
Hypophosphatemia - metabolism
Infant
Male
metabolic acidosis
Mutation
nephrolithiasis
Nephrolithiasis - genetics
Nephrolithiasis - metabolism
Phenotype
phosphate
Renal Conditions, Disorders and Treatments
SLC34A1
Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics
Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism
Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology
title Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical,%20biochemical,%20and%20pathophysiological%20analysis%20of%20SLC34A1%20mutations&rft.jtitle=Physiological%20reports&rft.au=Fearn,%20Amy&rft.date=2018-06&rft.volume=6&rft.issue=12&rft.spage=e13715&rft.epage=n/a&rft.pages=e13715-n/a&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.13715&rft_dat=%3Cwiley_pubme%3EPHY213715%3C/wiley_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/29924459&rfr_iscdi=true