Loading…
Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations
Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an aut...
Saved in:
Published in: | Physiological reports 2018-06, Vol.6 (12), p.e13715-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | e13715 |
container_title | Physiological reports |
container_volume | 6 |
creator | Fearn, Amy Allison, Benjamin Rice, Sarah J. Edwards, Noel Halbritter, Jan Bourgeois, Soline Pastor‐Arroyo, Eva M. Hildebrandt, Friedhelm Tasic, Velibor Wagner, Carsten A. Hernando, Nati Sayer, John A. Werner, Andreas |
description | Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an autosomal dominant trait. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Patient A had a single heterozygous pathogenic missense mutation (p.I456N) in SLC34A1, consistent with the autosomal dominant pattern of renal stone disease in this family. Patient B, with an autosomal recessive pattern of disease, was compound heterozygous for SLC34A1 variants; a missense variant (p.R512C) together with a relatively common in‐frame deletion p.V91A97del7 (91del7). Xenopus oocyte and renal (HKC‐8) cell line transfection studies of the variants revealed limited cell surface localization, consistent with trafficking defects. Co‐expression of wild‐type and I456N and 91del7 appeared to cause intracellular retention in HKC‐8, whereas the R512C mutant had a less dominant effect. Expression in Xenopus oocytes failed to demonstrate a significant dominant negative effect for I456N and R512C; however, a negative impact of 91del7 on [32P]phosphate transport was found. In conclusion, we have investigated pathogenic alleles of SLC34A1 which contribute to both autosomal dominant and autosomal recessive renal stone disease.
Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal tubulopathy, and hypophosphatemic nephrolithiasis. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Here, we investigate using oocyte and cell transfection studies the underlying pathogenic alleles of SLC34A1. |
doi_str_mv | 10.14814/phy2.13715 |
format | article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6010730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PHY213715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdBbNGevEvumrqzH9nkIpSgViwoqKCnZbPZNCtJNmRbpf_etNGiF0_DzLzzDDwInQKeAouBXbblhkyBCuAHaEwwhzAG8TpCE-_fMcaAKU0wO0IjkiSEMZ6M0X1a2cZqVV0EmXW6NPXQqCYPWrUqXc_01lVuuZ33Y1X1vQ9cETwtUspmENTrlVpZ1_gTdFioypvJdz1GLzfXz-k8XDzc3qWzRagZJDyk3EQUEmOSjOCc0liogmhquKI8pxloApoKDZHScWwilUPEWYFjIQQlOsnpMboauO06q02uTbPqVCXbztaq20inrPy7aWwpl-5DRr0CQXEPOB8AunPed6bY3wKWO5Vyq1LuVPbps9_v9tkfiX2ADIFPW5nNfyz5OH8jA_ULP9-BVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Fearn, Amy ; Allison, Benjamin ; Rice, Sarah J. ; Edwards, Noel ; Halbritter, Jan ; Bourgeois, Soline ; Pastor‐Arroyo, Eva M. ; Hildebrandt, Friedhelm ; Tasic, Velibor ; Wagner, Carsten A. ; Hernando, Nati ; Sayer, John A. ; Werner, Andreas</creator><creatorcontrib>Fearn, Amy ; Allison, Benjamin ; Rice, Sarah J. ; Edwards, Noel ; Halbritter, Jan ; Bourgeois, Soline ; Pastor‐Arroyo, Eva M. ; Hildebrandt, Friedhelm ; Tasic, Velibor ; Wagner, Carsten A. ; Hernando, Nati ; Sayer, John A. ; Werner, Andreas</creatorcontrib><description>Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an autosomal dominant trait. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Patient A had a single heterozygous pathogenic missense mutation (p.I456N) in SLC34A1, consistent with the autosomal dominant pattern of renal stone disease in this family. Patient B, with an autosomal recessive pattern of disease, was compound heterozygous for SLC34A1 variants; a missense variant (p.R512C) together with a relatively common in‐frame deletion p.V91A97del7 (91del7). Xenopus oocyte and renal (HKC‐8) cell line transfection studies of the variants revealed limited cell surface localization, consistent with trafficking defects. Co‐expression of wild‐type and I456N and 91del7 appeared to cause intracellular retention in HKC‐8, whereas the R512C mutant had a less dominant effect. Expression in Xenopus oocytes failed to demonstrate a significant dominant negative effect for I456N and R512C; however, a negative impact of 91del7 on [32P]phosphate transport was found. In conclusion, we have investigated pathogenic alleles of SLC34A1 which contribute to both autosomal dominant and autosomal recessive renal stone disease.
Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal tubulopathy, and hypophosphatemic nephrolithiasis. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Here, we investigate using oocyte and cell transfection studies the underlying pathogenic alleles of SLC34A1.</description><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.13715</identifier><identifier>PMID: 29924459</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Adult ; Case Report ; Case Reports ; Computer Simulation ; Endocrine and Metabolic Conditons, Disorders and Treatments ; Epithelial cell ; Fanconi syndrome ; Genetic Conditions Disorders and Treatments ; Humans ; Hypophosphatemia - genetics ; Hypophosphatemia - metabolism ; Infant ; Male ; metabolic acidosis ; Mutation ; nephrolithiasis ; Nephrolithiasis - genetics ; Nephrolithiasis - metabolism ; Phenotype ; phosphate ; Renal Conditions, Disorders and Treatments ; SLC34A1 ; Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics ; Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism ; Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology</subject><ispartof>Physiological reports, 2018-06, Vol.6 (12), p.e13715-n/a</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.</rights><rights>2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3</citedby><cites>FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3</cites><orcidid>0000-0003-1881-3782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010730/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010730/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,27924,27925,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29924459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fearn, Amy</creatorcontrib><creatorcontrib>Allison, Benjamin</creatorcontrib><creatorcontrib>Rice, Sarah J.</creatorcontrib><creatorcontrib>Edwards, Noel</creatorcontrib><creatorcontrib>Halbritter, Jan</creatorcontrib><creatorcontrib>Bourgeois, Soline</creatorcontrib><creatorcontrib>Pastor‐Arroyo, Eva M.</creatorcontrib><creatorcontrib>Hildebrandt, Friedhelm</creatorcontrib><creatorcontrib>Tasic, Velibor</creatorcontrib><creatorcontrib>Wagner, Carsten A.</creatorcontrib><creatorcontrib>Hernando, Nati</creatorcontrib><creatorcontrib>Sayer, John A.</creatorcontrib><creatorcontrib>Werner, Andreas</creatorcontrib><title>Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations</title><title>Physiological reports</title><addtitle>Physiol Rep</addtitle><description>Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an autosomal dominant trait. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Patient A had a single heterozygous pathogenic missense mutation (p.I456N) in SLC34A1, consistent with the autosomal dominant pattern of renal stone disease in this family. Patient B, with an autosomal recessive pattern of disease, was compound heterozygous for SLC34A1 variants; a missense variant (p.R512C) together with a relatively common in‐frame deletion p.V91A97del7 (91del7). Xenopus oocyte and renal (HKC‐8) cell line transfection studies of the variants revealed limited cell surface localization, consistent with trafficking defects. Co‐expression of wild‐type and I456N and 91del7 appeared to cause intracellular retention in HKC‐8, whereas the R512C mutant had a less dominant effect. Expression in Xenopus oocytes failed to demonstrate a significant dominant negative effect for I456N and R512C; however, a negative impact of 91del7 on [32P]phosphate transport was found. In conclusion, we have investigated pathogenic alleles of SLC34A1 which contribute to both autosomal dominant and autosomal recessive renal stone disease.
Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal tubulopathy, and hypophosphatemic nephrolithiasis. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Here, we investigate using oocyte and cell transfection studies the underlying pathogenic alleles of SLC34A1.</description><subject>Adult</subject><subject>Case Report</subject><subject>Case Reports</subject><subject>Computer Simulation</subject><subject>Endocrine and Metabolic Conditons, Disorders and Treatments</subject><subject>Epithelial cell</subject><subject>Fanconi syndrome</subject><subject>Genetic Conditions Disorders and Treatments</subject><subject>Humans</subject><subject>Hypophosphatemia - genetics</subject><subject>Hypophosphatemia - metabolism</subject><subject>Infant</subject><subject>Male</subject><subject>metabolic acidosis</subject><subject>Mutation</subject><subject>nephrolithiasis</subject><subject>Nephrolithiasis - genetics</subject><subject>Nephrolithiasis - metabolism</subject><subject>Phenotype</subject><subject>phosphate</subject><subject>Renal Conditions, Disorders and Treatments</subject><subject>SLC34A1</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology</subject><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kE1Lw0AQhhdBbNGevEvumrqzH9nkIpSgViwoqKCnZbPZNCtJNmRbpf_etNGiF0_DzLzzDDwInQKeAouBXbblhkyBCuAHaEwwhzAG8TpCE-_fMcaAKU0wO0IjkiSEMZ6M0X1a2cZqVV0EmXW6NPXQqCYPWrUqXc_01lVuuZ33Y1X1vQ9cETwtUspmENTrlVpZ1_gTdFioypvJdz1GLzfXz-k8XDzc3qWzRagZJDyk3EQUEmOSjOCc0liogmhquKI8pxloApoKDZHScWwilUPEWYFjIQQlOsnpMboauO06q02uTbPqVCXbztaq20inrPy7aWwpl-5DRr0CQXEPOB8AunPed6bY3wKWO5Vyq1LuVPbps9_v9tkfiX2ADIFPW5nNfyz5OH8jA_ULP9-BVQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Fearn, Amy</creator><creator>Allison, Benjamin</creator><creator>Rice, Sarah J.</creator><creator>Edwards, Noel</creator><creator>Halbritter, Jan</creator><creator>Bourgeois, Soline</creator><creator>Pastor‐Arroyo, Eva M.</creator><creator>Hildebrandt, Friedhelm</creator><creator>Tasic, Velibor</creator><creator>Wagner, Carsten A.</creator><creator>Hernando, Nati</creator><creator>Sayer, John A.</creator><creator>Werner, Andreas</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1881-3782</orcidid></search><sort><creationdate>201806</creationdate><title>Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations</title><author>Fearn, Amy ; Allison, Benjamin ; Rice, Sarah J. ; Edwards, Noel ; Halbritter, Jan ; Bourgeois, Soline ; Pastor‐Arroyo, Eva M. ; Hildebrandt, Friedhelm ; Tasic, Velibor ; Wagner, Carsten A. ; Hernando, Nati ; Sayer, John A. ; Werner, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Case Report</topic><topic>Case Reports</topic><topic>Computer Simulation</topic><topic>Endocrine and Metabolic Conditons, Disorders and Treatments</topic><topic>Epithelial cell</topic><topic>Fanconi syndrome</topic><topic>Genetic Conditions Disorders and Treatments</topic><topic>Humans</topic><topic>Hypophosphatemia - genetics</topic><topic>Hypophosphatemia - metabolism</topic><topic>Infant</topic><topic>Male</topic><topic>metabolic acidosis</topic><topic>Mutation</topic><topic>nephrolithiasis</topic><topic>Nephrolithiasis - genetics</topic><topic>Nephrolithiasis - metabolism</topic><topic>Phenotype</topic><topic>phosphate</topic><topic>Renal Conditions, Disorders and Treatments</topic><topic>SLC34A1</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fearn, Amy</creatorcontrib><creatorcontrib>Allison, Benjamin</creatorcontrib><creatorcontrib>Rice, Sarah J.</creatorcontrib><creatorcontrib>Edwards, Noel</creatorcontrib><creatorcontrib>Halbritter, Jan</creatorcontrib><creatorcontrib>Bourgeois, Soline</creatorcontrib><creatorcontrib>Pastor‐Arroyo, Eva M.</creatorcontrib><creatorcontrib>Hildebrandt, Friedhelm</creatorcontrib><creatorcontrib>Tasic, Velibor</creatorcontrib><creatorcontrib>Wagner, Carsten A.</creatorcontrib><creatorcontrib>Hernando, Nati</creatorcontrib><creatorcontrib>Sayer, John A.</creatorcontrib><creatorcontrib>Werner, Andreas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fearn, Amy</au><au>Allison, Benjamin</au><au>Rice, Sarah J.</au><au>Edwards, Noel</au><au>Halbritter, Jan</au><au>Bourgeois, Soline</au><au>Pastor‐Arroyo, Eva M.</au><au>Hildebrandt, Friedhelm</au><au>Tasic, Velibor</au><au>Wagner, Carsten A.</au><au>Hernando, Nati</au><au>Sayer, John A.</au><au>Werner, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations</atitle><jtitle>Physiological reports</jtitle><addtitle>Physiol Rep</addtitle><date>2018-06</date><risdate>2018</risdate><volume>6</volume><issue>12</issue><spage>e13715</spage><epage>n/a</epage><pages>e13715-n/a</pages><eissn>2051-817X</eissn><abstract>Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal Fanconi syndrome, which are typically autosomal recessive, and hypophosphatemic nephrolithiasis, which may be an autosomal dominant trait. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Patient A had a single heterozygous pathogenic missense mutation (p.I456N) in SLC34A1, consistent with the autosomal dominant pattern of renal stone disease in this family. Patient B, with an autosomal recessive pattern of disease, was compound heterozygous for SLC34A1 variants; a missense variant (p.R512C) together with a relatively common in‐frame deletion p.V91A97del7 (91del7). Xenopus oocyte and renal (HKC‐8) cell line transfection studies of the variants revealed limited cell surface localization, consistent with trafficking defects. Co‐expression of wild‐type and I456N and 91del7 appeared to cause intracellular retention in HKC‐8, whereas the R512C mutant had a less dominant effect. Expression in Xenopus oocytes failed to demonstrate a significant dominant negative effect for I456N and R512C; however, a negative impact of 91del7 on [32P]phosphate transport was found. In conclusion, we have investigated pathogenic alleles of SLC34A1 which contribute to both autosomal dominant and autosomal recessive renal stone disease.
Mutations in SLC34A1, encoding the proximal tubular sodium–phosphate transporter NaPi‐IIa, may cause a range of clinical phenotypes including infantile hypercalcemia, a proximal renal tubulopathy, and hypophosphatemic nephrolithiasis. Here, we report two patients with mixed clinical phenotypes, both with metabolic acidosis, hyperphosphaturia, and renal stones. Here, we investigate using oocyte and cell transfection studies the underlying pathogenic alleles of SLC34A1.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>29924459</pmid><doi>10.14814/phy2.13715</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1881-3782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2051-817X |
ispartof | Physiological reports, 2018-06, Vol.6 (12), p.e13715-n/a |
issn | 2051-817X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6010730 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest); PubMed Central |
subjects | Adult Case Report Case Reports Computer Simulation Endocrine and Metabolic Conditons, Disorders and Treatments Epithelial cell Fanconi syndrome Genetic Conditions Disorders and Treatments Humans Hypophosphatemia - genetics Hypophosphatemia - metabolism Infant Male metabolic acidosis Mutation nephrolithiasis Nephrolithiasis - genetics Nephrolithiasis - metabolism Phenotype phosphate Renal Conditions, Disorders and Treatments SLC34A1 Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology |
title | Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical,%20biochemical,%20and%20pathophysiological%20analysis%20of%20SLC34A1%20mutations&rft.jtitle=Physiological%20reports&rft.au=Fearn,%20Amy&rft.date=2018-06&rft.volume=6&rft.issue=12&rft.spage=e13715&rft.epage=n/a&rft.pages=e13715-n/a&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.13715&rft_dat=%3Cwiley_pubme%3EPHY213715%3C/wiley_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4195-35e6319ee9b20d3387af2c3e5a35d3b1c21c37c16ac88e6ad1654f0877732c9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/29924459&rfr_iscdi=true |