Loading…
Potential for primary productivity in a globally-distributed bacterial phototroph
Aerobic anoxygenic phototrophs (AAnPs) are common in marine environments and are associated with photoheterotrophic activity. To date, AAnPs that possess the potential for carbon fixation have not been identified in the surface ocean. Using the Tara Oceans metagenomic dataset, we have identified dra...
Saved in:
Published in: | The ISME Journal 2018-07, Vol.12 (7), p.1861-1866 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aerobic anoxygenic phototrophs (AAnPs) are common in marine environments and are associated with photoheterotrophic activity. To date, AAnPs that possess the potential for carbon fixation have not been identified in the surface ocean. Using the
Tara
Oceans metagenomic dataset, we have identified draft genomes of nine bacteria that possess the genomic potential for anoxygenic phototrophy, carbon fixation via the Calvin-Benson-Bassham cycle, and the oxidation of sulfite and thiosulfate. Forming a monophyletic clade within the
Alphaproteobacteria
and lacking cultured representatives, the organisms compose minor constituents of local microbial communities (0.1–1.0%), but are globally distributed, present in multiple samples from the North Pacific, Mediterranean Sea, the East Africa Coastal Province, and the Atlantic. This discovery may require re-examination of the microbial communities in the oceans to understand and constrain the role this group of organisms may play in the global carbon cycle. |
---|---|
ISSN: | 1751-7362 1751-7370 |
DOI: | 10.1038/s41396-018-0091-3 |