Loading…
ProTox-II: a webserver for the prediction of toxicity of chemicals
Abstract Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II...
Saved in:
Published in: | Nucleic acids research 2018-07, Vol.46 (W1), p.W257-W263 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013 |
container_end_page | W263 |
container_issue | W1 |
container_start_page | W257 |
container_title | Nucleic acids research |
container_volume | 46 |
creator | Banerjee, Priyanka Eckert, Andreas O Schrey, Anna K Preissner, Robert |
description | Abstract
Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity. |
doi_str_mv | 10.1093/nar/gky318 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gky318</oup_id><sourcerecordid>2033390884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlYv_gDZiyDC2slH08SDoMWPQkEP9Ryy2WwbbTc12a3tv3dLq-jF0zswD-8MD0KnGK4wSNotdehO3tcUiz3UxpSTlElO9lEbKPRSDEy00FGMbwCY4R47RC0i-1j0MLTR3UvwY79Kh8PrRCefNos2LG1ICh-SamqTRbC5M5XzZeKLpPIrZ1y13sxmaufO6Fk8RgdFE_Zklx30-nA_Hjylo-fH4eB2lBrGZJWaXAohIZMs05wZnVHZt5z3BSE50yTjnGFDLdOS6FxIbXAvpyTPIANqDWDaQTfb3kWdzW1ubFkFPVOL4OY6rJXXTv3dlG6qJn6pOFAMeFNwsSsI_qO2sVJzF42dzXRpfR0VAUqpBCFYg15uURN8jMEWP2cwqI101UhXW-kNfPb7sR_023IDnG8BXy_-K_oC6zaLXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033390884</pqid></control><display><type>article</type><title>ProTox-II: a webserver for the prediction of toxicity of chemicals</title><source>PubMed Central</source><source>Oxford Academic Journals (Open Access)</source><creator>Banerjee, Priyanka ; Eckert, Andreas O ; Schrey, Anna K ; Preissner, Robert</creator><creatorcontrib>Banerjee, Priyanka ; Eckert, Andreas O ; Schrey, Anna K ; Preissner, Robert</creatorcontrib><description>Abstract
Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gky318</identifier><identifier>PMID: 29718510</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology ; Drug-Related Side Effects and Adverse Reactions ; Humans ; Internet ; Machine Learning ; Risk Assessment ; Software ; Web Server Issue</subject><ispartof>Nucleic acids research, 2018-07, Vol.46 (W1), p.W257-W263</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013</citedby><cites>FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29718510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, Priyanka</creatorcontrib><creatorcontrib>Eckert, Andreas O</creatorcontrib><creatorcontrib>Schrey, Anna K</creatorcontrib><creatorcontrib>Preissner, Robert</creatorcontrib><title>ProTox-II: a webserver for the prediction of toxicity of chemicals</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity.</description><subject>Computational Biology</subject><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Humans</subject><subject>Internet</subject><subject>Machine Learning</subject><subject>Risk Assessment</subject><subject>Software</subject><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kE1LAzEQhoMotlYv_gDZiyDC2slH08SDoMWPQkEP9Ryy2WwbbTc12a3tv3dLq-jF0zswD-8MD0KnGK4wSNotdehO3tcUiz3UxpSTlElO9lEbKPRSDEy00FGMbwCY4R47RC0i-1j0MLTR3UvwY79Kh8PrRCefNos2LG1ICh-SamqTRbC5M5XzZeKLpPIrZ1y13sxmaufO6Fk8RgdFE_Zklx30-nA_Hjylo-fH4eB2lBrGZJWaXAohIZMs05wZnVHZt5z3BSE50yTjnGFDLdOS6FxIbXAvpyTPIANqDWDaQTfb3kWdzW1ubFkFPVOL4OY6rJXXTv3dlG6qJn6pOFAMeFNwsSsI_qO2sVJzF42dzXRpfR0VAUqpBCFYg15uURN8jMEWP2cwqI101UhXW-kNfPb7sR_023IDnG8BXy_-K_oC6zaLXQ</recordid><startdate>20180702</startdate><enddate>20180702</enddate><creator>Banerjee, Priyanka</creator><creator>Eckert, Andreas O</creator><creator>Schrey, Anna K</creator><creator>Preissner, Robert</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180702</creationdate><title>ProTox-II: a webserver for the prediction of toxicity of chemicals</title><author>Banerjee, Priyanka ; Eckert, Andreas O ; Schrey, Anna K ; Preissner, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational Biology</topic><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Humans</topic><topic>Internet</topic><topic>Machine Learning</topic><topic>Risk Assessment</topic><topic>Software</topic><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Priyanka</creatorcontrib><creatorcontrib>Eckert, Andreas O</creatorcontrib><creatorcontrib>Schrey, Anna K</creatorcontrib><creatorcontrib>Preissner, Robert</creatorcontrib><collection>Oxford Academic Journals (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Priyanka</au><au>Eckert, Andreas O</au><au>Schrey, Anna K</au><au>Preissner, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ProTox-II: a webserver for the prediction of toxicity of chemicals</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2018-07-02</date><risdate>2018</risdate><volume>46</volume><issue>W1</issue><spage>W257</spage><epage>W263</epage><pages>W257-W263</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29718510</pmid><doi>10.1093/nar/gky318</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2018-07, Vol.46 (W1), p.W257-W263 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031011 |
source | PubMed Central; Oxford Academic Journals (Open Access) |
subjects | Computational Biology Drug-Related Side Effects and Adverse Reactions Humans Internet Machine Learning Risk Assessment Software Web Server Issue |
title | ProTox-II: a webserver for the prediction of toxicity of chemicals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ProTox-II:%20a%20webserver%20for%20the%20prediction%20of%20toxicity%20of%20chemicals&rft.jtitle=Nucleic%20acids%20research&rft.au=Banerjee,%20Priyanka&rft.date=2018-07-02&rft.volume=46&rft.issue=W1&rft.spage=W257&rft.epage=W263&rft.pages=W257-W263&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gky318&rft_dat=%3Cproquest_pubme%3E2033390884%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2033390884&rft_id=info:pmid/29718510&rft_oup_id=10.1093/nar/gky318&rfr_iscdi=true |