Loading…

ProTox-II: a webserver for the prediction of toxicity of chemicals

Abstract Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2018-07, Vol.46 (W1), p.W257-W263
Main Authors: Banerjee, Priyanka, Eckert, Andreas O, Schrey, Anna K, Preissner, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013
cites cdi_FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013
container_end_page W263
container_issue W1
container_start_page W257
container_title Nucleic acids research
container_volume 46
creator Banerjee, Priyanka
Eckert, Andreas O
Schrey, Anna K
Preissner, Robert
description Abstract Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity.
doi_str_mv 10.1093/nar/gky318
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gky318</oup_id><sourcerecordid>2033390884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlYv_gDZiyDC2slH08SDoMWPQkEP9Ryy2WwbbTc12a3tv3dLq-jF0zswD-8MD0KnGK4wSNotdehO3tcUiz3UxpSTlElO9lEbKPRSDEy00FGMbwCY4R47RC0i-1j0MLTR3UvwY79Kh8PrRCefNos2LG1ICh-SamqTRbC5M5XzZeKLpPIrZ1y13sxmaufO6Fk8RgdFE_Zklx30-nA_Hjylo-fH4eB2lBrGZJWaXAohIZMs05wZnVHZt5z3BSE50yTjnGFDLdOS6FxIbXAvpyTPIANqDWDaQTfb3kWdzW1ubFkFPVOL4OY6rJXXTv3dlG6qJn6pOFAMeFNwsSsI_qO2sVJzF42dzXRpfR0VAUqpBCFYg15uURN8jMEWP2cwqI101UhXW-kNfPb7sR_023IDnG8BXy_-K_oC6zaLXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033390884</pqid></control><display><type>article</type><title>ProTox-II: a webserver for the prediction of toxicity of chemicals</title><source>PubMed Central</source><source>Oxford Academic Journals (Open Access)</source><creator>Banerjee, Priyanka ; Eckert, Andreas O ; Schrey, Anna K ; Preissner, Robert</creator><creatorcontrib>Banerjee, Priyanka ; Eckert, Andreas O ; Schrey, Anna K ; Preissner, Robert</creatorcontrib><description>Abstract Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gky318</identifier><identifier>PMID: 29718510</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology ; Drug-Related Side Effects and Adverse Reactions ; Humans ; Internet ; Machine Learning ; Risk Assessment ; Software ; Web Server Issue</subject><ispartof>Nucleic acids research, 2018-07, Vol.46 (W1), p.W257-W263</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013</citedby><cites>FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29718510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, Priyanka</creatorcontrib><creatorcontrib>Eckert, Andreas O</creatorcontrib><creatorcontrib>Schrey, Anna K</creatorcontrib><creatorcontrib>Preissner, Robert</creatorcontrib><title>ProTox-II: a webserver for the prediction of toxicity of chemicals</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity.</description><subject>Computational Biology</subject><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Humans</subject><subject>Internet</subject><subject>Machine Learning</subject><subject>Risk Assessment</subject><subject>Software</subject><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kE1LAzEQhoMotlYv_gDZiyDC2slH08SDoMWPQkEP9Ryy2WwbbTc12a3tv3dLq-jF0zswD-8MD0KnGK4wSNotdehO3tcUiz3UxpSTlElO9lEbKPRSDEy00FGMbwCY4R47RC0i-1j0MLTR3UvwY79Kh8PrRCefNos2LG1ICh-SamqTRbC5M5XzZeKLpPIrZ1y13sxmaufO6Fk8RgdFE_Zklx30-nA_Hjylo-fH4eB2lBrGZJWaXAohIZMs05wZnVHZt5z3BSE50yTjnGFDLdOS6FxIbXAvpyTPIANqDWDaQTfb3kWdzW1ubFkFPVOL4OY6rJXXTv3dlG6qJn6pOFAMeFNwsSsI_qO2sVJzF42dzXRpfR0VAUqpBCFYg15uURN8jMEWP2cwqI101UhXW-kNfPb7sR_023IDnG8BXy_-K_oC6zaLXQ</recordid><startdate>20180702</startdate><enddate>20180702</enddate><creator>Banerjee, Priyanka</creator><creator>Eckert, Andreas O</creator><creator>Schrey, Anna K</creator><creator>Preissner, Robert</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180702</creationdate><title>ProTox-II: a webserver for the prediction of toxicity of chemicals</title><author>Banerjee, Priyanka ; Eckert, Andreas O ; Schrey, Anna K ; Preissner, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational Biology</topic><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Humans</topic><topic>Internet</topic><topic>Machine Learning</topic><topic>Risk Assessment</topic><topic>Software</topic><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Priyanka</creatorcontrib><creatorcontrib>Eckert, Andreas O</creatorcontrib><creatorcontrib>Schrey, Anna K</creatorcontrib><creatorcontrib>Preissner, Robert</creatorcontrib><collection>Oxford Academic Journals (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Priyanka</au><au>Eckert, Andreas O</au><au>Schrey, Anna K</au><au>Preissner, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ProTox-II: a webserver for the prediction of toxicity of chemicals</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2018-07-02</date><risdate>2018</risdate><volume>46</volume><issue>W1</issue><spage>W257</spage><epage>W263</epage><pages>W257-W263</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29718510</pmid><doi>10.1093/nar/gky318</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2018-07, Vol.46 (W1), p.W257-W263
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031011
source PubMed Central; Oxford Academic Journals (Open Access)
subjects Computational Biology
Drug-Related Side Effects and Adverse Reactions
Humans
Internet
Machine Learning
Risk Assessment
Software
Web Server Issue
title ProTox-II: a webserver for the prediction of toxicity of chemicals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ProTox-II:%20a%20webserver%20for%20the%20prediction%20of%20toxicity%20of%20chemicals&rft.jtitle=Nucleic%20acids%20research&rft.au=Banerjee,%20Priyanka&rft.date=2018-07-02&rft.volume=46&rft.issue=W1&rft.spage=W257&rft.epage=W263&rft.pages=W257-W263&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gky318&rft_dat=%3Cproquest_pubme%3E2033390884%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-cd98890b94ba64cab397e667822d4a2b6641c3e4a92ad89ac15d32db0b03ec013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2033390884&rft_id=info:pmid/29718510&rft_oup_id=10.1093/nar/gky318&rfr_iscdi=true