Loading…

Isoform-specific role of Na/K-ATPase α1 in skeletal muscle

The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology: endocrinology and metabolism 2018-06, Vol.314 (6), p.E620-E629
Main Authors: Kutz, Laura C, Mukherji, Shreya T, Wang, Xiaoliang, Bryant, Amber, Larre, Isabel, Heiny, Judith A, Lingrel, Jerry B, Pierre, Sandrine V, Xie, Zijian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3177-1818f1da38eda7ce9973a6c98ab63c7949f770b9b752cb93ec7a5e5eac0610d53
cites cdi_FETCH-LOGICAL-c3177-1818f1da38eda7ce9973a6c98ab63c7949f770b9b752cb93ec7a5e5eac0610d53
container_end_page E629
container_issue 6
container_start_page E620
container_title American journal of physiology: endocrinology and metabolism
container_volume 314
creator Kutz, Laura C
Mukherji, Shreya T
Wang, Xiaoliang
Bryant, Amber
Larre, Isabel
Heiny, Judith A
Lingrel, Jerry B
Pierre, Sandrine V
Xie, Zijian
description The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1 ) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K , fat tissue mass, and exercise capacity were not altered in α1 mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1 is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.
doi_str_mv 10.1152/AJPENDO.00275.2017
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6032065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002212718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-1818f1da38eda7ce9973a6c98ab63c7949f770b9b752cb93ec7a5e5eac0610d53</originalsourceid><addsrcrecordid>eNpVkMtOwkAUhidGI4i-gAvTpZvCXDqdTkxMCKKiBFjgejKdnmqx7dQONfGxfBGfySJIdHUW_-X8-RA6J7hPCKeD4cNiPLuZ9zGmgvcpJuIAdVuB-oRzfoi6mEjmkyiQHXTi3ApjLHhAj1GHyoBFIcNddDVxNrV14bsKTJZmxqttDp5NvZkePPrD5UI78L4-iZeVnnuFHNY694rGmRxO0VGqcwdnu9tDT7fj5ejen87vJqPh1DeMCNEOIFFKEs0iSLQwIKVgOjQy0nHIjJCBTIXAsYwFpyaWDIzQHDhog0OCE8566HrbWzVxAYmBcl3rXFV1Vuj6Q1mdqf9Kmb2oZ_uuQswoDjcFl7uC2r414NaqyJyBPNcl2MYp2hKkhAoStVa6tZraOldDun9DsNpQV3pVQZlY9UNdbai3oYu_A_eRX8zsG31cfvI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002212718</pqid></control><display><type>article</type><title>Isoform-specific role of Na/K-ATPase α1 in skeletal muscle</title><source>American Physiological Society Free</source><creator>Kutz, Laura C ; Mukherji, Shreya T ; Wang, Xiaoliang ; Bryant, Amber ; Larre, Isabel ; Heiny, Judith A ; Lingrel, Jerry B ; Pierre, Sandrine V ; Xie, Zijian</creator><creatorcontrib>Kutz, Laura C ; Mukherji, Shreya T ; Wang, Xiaoliang ; Bryant, Amber ; Larre, Isabel ; Heiny, Judith A ; Lingrel, Jerry B ; Pierre, Sandrine V ; Xie, Zijian</creatorcontrib><description>The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1 ) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K , fat tissue mass, and exercise capacity were not altered in α1 mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1 is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.</description><identifier>ISSN: 0193-1849</identifier><identifier>EISSN: 1522-1555</identifier><identifier>DOI: 10.1152/AJPENDO.00275.2017</identifier><identifier>PMID: 29438630</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Gene Expression Regulation, Enzymologic ; Isoenzymes - genetics ; Isoenzymes - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle Contraction - physiology ; Muscle, Skeletal - growth &amp; development ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Organ Size - genetics ; Physical Conditioning, Animal ; Sodium-Potassium-Exchanging ATPase - genetics ; Sodium-Potassium-Exchanging ATPase - physiology</subject><ispartof>American journal of physiology: endocrinology and metabolism, 2018-06, Vol.314 (6), p.E620-E629</ispartof><rights>Copyright © 2018 the American Physiological Society 2018 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-1818f1da38eda7ce9973a6c98ab63c7949f770b9b752cb93ec7a5e5eac0610d53</citedby><cites>FETCH-LOGICAL-c3177-1818f1da38eda7ce9973a6c98ab63c7949f770b9b752cb93ec7a5e5eac0610d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29438630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kutz, Laura C</creatorcontrib><creatorcontrib>Mukherji, Shreya T</creatorcontrib><creatorcontrib>Wang, Xiaoliang</creatorcontrib><creatorcontrib>Bryant, Amber</creatorcontrib><creatorcontrib>Larre, Isabel</creatorcontrib><creatorcontrib>Heiny, Judith A</creatorcontrib><creatorcontrib>Lingrel, Jerry B</creatorcontrib><creatorcontrib>Pierre, Sandrine V</creatorcontrib><creatorcontrib>Xie, Zijian</creatorcontrib><title>Isoform-specific role of Na/K-ATPase α1 in skeletal muscle</title><title>American journal of physiology: endocrinology and metabolism</title><addtitle>Am J Physiol Endocrinol Metab</addtitle><description>The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1 ) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K , fat tissue mass, and exercise capacity were not altered in α1 mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1 is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.</description><subject>Animals</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Skeletal - growth &amp; development</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Organ Size - genetics</subject><subject>Physical Conditioning, Animal</subject><subject>Sodium-Potassium-Exchanging ATPase - genetics</subject><subject>Sodium-Potassium-Exchanging ATPase - physiology</subject><issn>0193-1849</issn><issn>1522-1555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwkAUhidGI4i-gAvTpZvCXDqdTkxMCKKiBFjgejKdnmqx7dQONfGxfBGfySJIdHUW_-X8-RA6J7hPCKeD4cNiPLuZ9zGmgvcpJuIAdVuB-oRzfoi6mEjmkyiQHXTi3ApjLHhAj1GHyoBFIcNddDVxNrV14bsKTJZmxqttDp5NvZkePPrD5UI78L4-iZeVnnuFHNY694rGmRxO0VGqcwdnu9tDT7fj5ejen87vJqPh1DeMCNEOIFFKEs0iSLQwIKVgOjQy0nHIjJCBTIXAsYwFpyaWDIzQHDhog0OCE8566HrbWzVxAYmBcl3rXFV1Vuj6Q1mdqf9Kmb2oZ_uuQswoDjcFl7uC2r414NaqyJyBPNcl2MYp2hKkhAoStVa6tZraOldDun9DsNpQV3pVQZlY9UNdbai3oYu_A_eRX8zsG31cfvI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Kutz, Laura C</creator><creator>Mukherji, Shreya T</creator><creator>Wang, Xiaoliang</creator><creator>Bryant, Amber</creator><creator>Larre, Isabel</creator><creator>Heiny, Judith A</creator><creator>Lingrel, Jerry B</creator><creator>Pierre, Sandrine V</creator><creator>Xie, Zijian</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180601</creationdate><title>Isoform-specific role of Na/K-ATPase α1 in skeletal muscle</title><author>Kutz, Laura C ; Mukherji, Shreya T ; Wang, Xiaoliang ; Bryant, Amber ; Larre, Isabel ; Heiny, Judith A ; Lingrel, Jerry B ; Pierre, Sandrine V ; Xie, Zijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-1818f1da38eda7ce9973a6c98ab63c7949f770b9b752cb93ec7a5e5eac0610d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Skeletal - growth &amp; development</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Organ Size - genetics</topic><topic>Physical Conditioning, Animal</topic><topic>Sodium-Potassium-Exchanging ATPase - genetics</topic><topic>Sodium-Potassium-Exchanging ATPase - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutz, Laura C</creatorcontrib><creatorcontrib>Mukherji, Shreya T</creatorcontrib><creatorcontrib>Wang, Xiaoliang</creatorcontrib><creatorcontrib>Bryant, Amber</creatorcontrib><creatorcontrib>Larre, Isabel</creatorcontrib><creatorcontrib>Heiny, Judith A</creatorcontrib><creatorcontrib>Lingrel, Jerry B</creatorcontrib><creatorcontrib>Pierre, Sandrine V</creatorcontrib><creatorcontrib>Xie, Zijian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology: endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutz, Laura C</au><au>Mukherji, Shreya T</au><au>Wang, Xiaoliang</au><au>Bryant, Amber</au><au>Larre, Isabel</au><au>Heiny, Judith A</au><au>Lingrel, Jerry B</au><au>Pierre, Sandrine V</au><au>Xie, Zijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoform-specific role of Na/K-ATPase α1 in skeletal muscle</atitle><jtitle>American journal of physiology: endocrinology and metabolism</jtitle><addtitle>Am J Physiol Endocrinol Metab</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>314</volume><issue>6</issue><spage>E620</spage><epage>E629</epage><pages>E620-E629</pages><issn>0193-1849</issn><eissn>1522-1555</eissn><abstract>The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1 ) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K , fat tissue mass, and exercise capacity were not altered in α1 mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1 is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>29438630</pmid><doi>10.1152/AJPENDO.00275.2017</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0193-1849
ispartof American journal of physiology: endocrinology and metabolism, 2018-06, Vol.314 (6), p.E620-E629
issn 0193-1849
1522-1555
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6032065
source American Physiological Society Free
subjects Animals
Gene Expression Regulation, Enzymologic
Isoenzymes - genetics
Isoenzymes - physiology
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Muscle Contraction - physiology
Muscle, Skeletal - growth & development
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Organ Size - genetics
Physical Conditioning, Animal
Sodium-Potassium-Exchanging ATPase - genetics
Sodium-Potassium-Exchanging ATPase - physiology
title Isoform-specific role of Na/K-ATPase α1 in skeletal muscle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoform-specific%20role%20of%20Na/K-ATPase%20%CE%B11%20in%20skeletal%20muscle&rft.jtitle=American%20journal%20of%20physiology:%20endocrinology%20and%20metabolism&rft.au=Kutz,%20Laura%20C&rft.date=2018-06-01&rft.volume=314&rft.issue=6&rft.spage=E620&rft.epage=E629&rft.pages=E620-E629&rft.issn=0193-1849&rft.eissn=1522-1555&rft_id=info:doi/10.1152/AJPENDO.00275.2017&rft_dat=%3Cproquest_pubme%3E2002212718%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-1818f1da38eda7ce9973a6c98ab63c7949f770b9b752cb93ec7a5e5eac0610d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002212718&rft_id=info:pmid/29438630&rfr_iscdi=true