Loading…
Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers
Deep learning strategies, particularly convolutional neural networks (CNNs), are especially suited to finding patterns in images and using those patterns for image classification. The method is normally applied to an image patch and assigns a class weight to the patch; this method has recently been...
Saved in:
Published in: | Biomedical optics express 2018-07, Vol.9 (7), p.3049-3066 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep learning strategies, particularly convolutional neural networks (CNNs), are especially suited to finding patterns in images and using those patterns for image classification. The method is normally applied to an image patch and assigns a class weight to the patch; this method has recently been used to detect the probability of retinal boundary locations in OCT images, which is subsequently used to segment the OCT image using a graph-search approach. This paper examines the effects of a number of modifications to the CNN architecture with the aim of optimizing retinal layer segmentation, specifically the effect of patch size as well as the network architecture design on CNN performance and subsequent layer segmentation. The results demonstrate that increasing patch size can improve the performance of the classification and provides a more reliable segmentation in the analysis of retinal layer characteristics in OCT imaging. Similarly, this work shows that changing aspects of the CNN network design can also significantly improve the segmentation results. This work also demonstrates that the performance of the method can change depending on the number of classes (i.e. boundaries) used to train the CNN, with fewer classes showing an inferior performance due to the presence of similar image features between classes that can trigger false positives. Changes in the network (patch size and or architecture) can be applied to provide a superior segmentation performance, which is robust to the class effect. The findings from this work may inform future CNN development in OCT retinal image analysis. |
---|---|
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.9.003049 |