Loading…

Structural Basis for the Catalytic Mechanism of Ethylenediamine‑N,N′‑disuccinic Acid Lyase, a Carbon–Nitrogen Bond-Forming Enzyme with a Broad Substrate Scope

The natural aminocarboxylic acid product ethylenediamine-N,N′-disuccinic acid [(S,S)-EDDS] is able to form a stable complex with metal ions, making it an attractive biodegradable alternative for the synthetic metal chelator ethylenediaminetetraacetic acid (EDTA), which is currently used on a large s...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2018-07, Vol.57 (26), p.3752-3763
Main Authors: Poddar, Harshwardhan, de Villiers, Jandré, Zhang, Jielin, Puthan Veetil, Vinod, Raj, Hans, Thunnissen, Andy-Mark W. H, Poelarends, Gerrit J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The natural aminocarboxylic acid product ethylenediamine-N,N′-disuccinic acid [(S,S)-EDDS] is able to form a stable complex with metal ions, making it an attractive biodegradable alternative for the synthetic metal chelator ethylenediaminetetraacetic acid (EDTA), which is currently used on a large scale in numerous applications. Previous studies have demonstrated that biodegradation of (S,S)-EDDS may be initiated by an EDDS lyase, converting (S,S)-EDDS via the intermediate N-(2-aminoethyl)­aspartic acid (AEAA) into ethylenediamine and two molecules of fumarate. However, current knowledge of this enzyme is limited because of the absence of structural data. Here, we describe the identification and characterization of an EDDS lyase from Chelativorans sp. BNC1, which has a broad substrate scope, accepting various mono- and diamines for addition to fumarate. We report crystal structures of the enzyme in an unliganded state and in complex with formate, succinate, fumarate, AEAA, and (S,S)-EDDS. The structures reveal a tertiary and quaternary fold that is characteristic of the aspartase/fumarase superfamily and support a mechanism that involves general base-catalyzed, sequential two-step deamination of (S,S)-EDDS. This work broadens our understanding of mechanistic diversity within the aspartase/fumarase superfamily and will aid in the optimization of EDDS lyase for asymmetric synthesis of valuable (metal-chelating) aminocarboxylic acids.
ISSN:0006-2960
1520-4995
1520-4995
DOI:10.1021/acs.biochem.8b00406