Loading…
Degradation of unmethylated miRNA/miRNAs by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis
The 3′ end methylation catalyzed by HUA Enhancer 1 (HEN1) is a crucial step of small RNA stabilization in plants, yet how unmethylated small RNAs undergo degradation remains largely unknown. Using a reverse genetic approach, we here show that Atrimmer 2 (ATRM2), a DEDDy-type 3′ to 5′ exoribonuclease...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-07, Vol.115 (28), p.E6659-E6667 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-a5286e6af8e1421ac7c51105ef876393ab9f0b42bf8d9c0292d6dc2926116b8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-a5286e6af8e1421ac7c51105ef876393ab9f0b42bf8d9c0292d6dc2926116b8c3 |
container_end_page | E6667 |
container_issue | 28 |
container_start_page | E6659 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Wang, Xiaoyan Wang, Yuan Dou, Yongchao Chen, Lu Wang, Junli Jiang, Ning Guo, Chunce Yao, Qingqing Wang, Chizao Liu, Lin Yu, Bin Zheng, Binglian Chekanova, Julia A. Ma, Jinbiao Ren, Guodong |
description | The 3′ end methylation catalyzed by HUA Enhancer 1 (HEN1) is a crucial step of small RNA stabilization in plants, yet how unmethylated small RNAs undergo degradation remains largely unknown. Using a reverse genetic approach, we here show that Atrimmer 2 (ATRM2), a DEDDy-type 3′ to 5′ exoribonuclease, acts in the degradation of unmethylated miRNAs and miRNA*s in Arabidopsis. Loss-of-function mutations in ATRM2 partially suppress the morphological defects caused by HEN1 malfunction, with restored levels of a subset of miRNAs and receded expression of corresponding miRNA targets. Dysfunction of ATRM2 has negligible effect on miRNA trimming, and further increase the fertility of hen1 heso1 urt1, a mutant with an almost complete abolishment of miRNA uridylation, indicating that ATRM2 may neither be involved in 3′ to 5′ trimming nor be the enzyme that specifically degrades uridylated miRNAs. Notably, the fold changes of miRNAs and their corresponding miRNA*s were significantly correlated in hen1 atrm2 versus hen1. Unexpectedly, we observed a marked increase of 3′ to 5′ trimming of several miRNA*s but not miRNAs in ATRM2 compromised backgrounds. These data suggest an action of ATRM2 on miRNA/miRNA* duplexes, and the existence of an unknown exoribonuclease for specific trimming of miRNA*. This asymmetric effect on miRNA/miRNA* is likely related to Argonaute (AGO) proteins, which can distinguish miRNAs from miRNA*s. Finally, we show that ATRM2 colocalizes and physically interacts with Argonaute 1 (AGO1). Taken together, our results suggest that ATRM2 may be involved in the surveillance of unmethylated miRNA/miRNA* duplexes during the initiation step of RNA-induced silencing complex assembly. |
doi_str_mv | 10.1073/pnas.1721917115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26510948</jstor_id><sourcerecordid>26510948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a5286e6af8e1421ac7c51105ef876393ab9f0b42bf8d9c0292d6dc2926116b8c3</originalsourceid><addsrcrecordid>eNpdks9u1DAQxi0EokvhzAlkiQuXdMeO7dgXpFW3_JEqkBCcLcdxWq-SeLEdRG48E4_Ek-BlSwtc5jvMz9_M6DNCTwmcEWjq9X4y6Yw0lCjSEMLvoRUBRSrBFNxHKwDaVJJRdoIepbQDAMUlPEQnVClGOFcrFLbuKprOZB8mHHo8T6PL18tgsuvw6D--36x_14TbBRu8vdhulyove4frn99_4BwwP6j7FqJvwzTbwZnk8CZHP44uYor9hDfRtL4L--TTY_SgN0NyT270FH1-ffHp_G11-eHNu_PNZWUZq3NlOJXCCdNLRxglxjaWEwLc9bIRtapNq3poGW172SkLVNFOdLaIIES00tan6NXRdz-3o-usm3I0g96XtUxcdDBe_9uZ_LW-Cl-1ACY5bYrByxuDGL7MLmU9-mTdMJjJhTlpClxxUTeCFPTFf-guzHEq52lKAKSEmslCrY-UjSGl6PrbZQjoQ5j6EKa-C7O8eP73Dbf8n_QK8OwI7FIO8a4vePkFZeQvP5amOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100880348</pqid></control><display><type>article</type><title>Degradation of unmethylated miRNA/miRNAs by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Wang, Xiaoyan ; Wang, Yuan ; Dou, Yongchao ; Chen, Lu ; Wang, Junli ; Jiang, Ning ; Guo, Chunce ; Yao, Qingqing ; Wang, Chizao ; Liu, Lin ; Yu, Bin ; Zheng, Binglian ; Chekanova, Julia A. ; Ma, Jinbiao ; Ren, Guodong</creator><creatorcontrib>Wang, Xiaoyan ; Wang, Yuan ; Dou, Yongchao ; Chen, Lu ; Wang, Junli ; Jiang, Ning ; Guo, Chunce ; Yao, Qingqing ; Wang, Chizao ; Liu, Lin ; Yu, Bin ; Zheng, Binglian ; Chekanova, Julia A. ; Ma, Jinbiao ; Ren, Guodong</creatorcontrib><description>The 3′ end methylation catalyzed by HUA Enhancer 1 (HEN1) is a crucial step of small RNA stabilization in plants, yet how unmethylated small RNAs undergo degradation remains largely unknown. Using a reverse genetic approach, we here show that Atrimmer 2 (ATRM2), a DEDDy-type 3′ to 5′ exoribonuclease, acts in the degradation of unmethylated miRNAs and miRNA*s in Arabidopsis. Loss-of-function mutations in ATRM2 partially suppress the morphological defects caused by HEN1 malfunction, with restored levels of a subset of miRNAs and receded expression of corresponding miRNA targets. Dysfunction of ATRM2 has negligible effect on miRNA trimming, and further increase the fertility of hen1 heso1 urt1, a mutant with an almost complete abolishment of miRNA uridylation, indicating that ATRM2 may neither be involved in 3′ to 5′ trimming nor be the enzyme that specifically degrades uridylated miRNAs. Notably, the fold changes of miRNAs and their corresponding miRNA*s were significantly correlated in hen1 atrm2 versus hen1. Unexpectedly, we observed a marked increase of 3′ to 5′ trimming of several miRNA*s but not miRNAs in ATRM2 compromised backgrounds. These data suggest an action of ATRM2 on miRNA/miRNA* duplexes, and the existence of an unknown exoribonuclease for specific trimming of miRNA*. This asymmetric effect on miRNA/miRNA* is likely related to Argonaute (AGO) proteins, which can distinguish miRNAs from miRNA*s. Finally, we show that ATRM2 colocalizes and physically interacts with Argonaute 1 (AGO1). Taken together, our results suggest that ATRM2 may be involved in the surveillance of unmethylated miRNA/miRNA* duplexes during the initiation step of RNA-induced silencing complex assembly.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1721917115</identifier><identifier>PMID: 29941559</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological Sciences ; Degradation ; DNA methylation ; Exoribonucleases - genetics ; Exoribonucleases - metabolism ; Fertility ; Flowers & plants ; Methylation ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Mutation ; PNAS Plus ; Proteins ; Ribonucleic acid ; RNA ; RNA, Plant - genetics ; RNA, Plant - metabolism ; RNA-induced silencing complex ; RNA-mediated interference ; Trimming</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (28), p.E6659-E6667</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jul 10, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a5286e6af8e1421ac7c51105ef876393ab9f0b42bf8d9c0292d6dc2926116b8c3</citedby><cites>FETCH-LOGICAL-c443t-a5286e6af8e1421ac7c51105ef876393ab9f0b42bf8d9c0292d6dc2926116b8c3</cites><orcidid>0000-0002-1895-7578 ; 0000-0002-0232-1786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26510948$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26510948$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29941559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaoyan</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Dou, Yongchao</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Wang, Junli</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Guo, Chunce</creatorcontrib><creatorcontrib>Yao, Qingqing</creatorcontrib><creatorcontrib>Wang, Chizao</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Zheng, Binglian</creatorcontrib><creatorcontrib>Chekanova, Julia A.</creatorcontrib><creatorcontrib>Ma, Jinbiao</creatorcontrib><creatorcontrib>Ren, Guodong</creatorcontrib><title>Degradation of unmethylated miRNA/miRNAs by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The 3′ end methylation catalyzed by HUA Enhancer 1 (HEN1) is a crucial step of small RNA stabilization in plants, yet how unmethylated small RNAs undergo degradation remains largely unknown. Using a reverse genetic approach, we here show that Atrimmer 2 (ATRM2), a DEDDy-type 3′ to 5′ exoribonuclease, acts in the degradation of unmethylated miRNAs and miRNA*s in Arabidopsis. Loss-of-function mutations in ATRM2 partially suppress the morphological defects caused by HEN1 malfunction, with restored levels of a subset of miRNAs and receded expression of corresponding miRNA targets. Dysfunction of ATRM2 has negligible effect on miRNA trimming, and further increase the fertility of hen1 heso1 urt1, a mutant with an almost complete abolishment of miRNA uridylation, indicating that ATRM2 may neither be involved in 3′ to 5′ trimming nor be the enzyme that specifically degrades uridylated miRNAs. Notably, the fold changes of miRNAs and their corresponding miRNA*s were significantly correlated in hen1 atrm2 versus hen1. Unexpectedly, we observed a marked increase of 3′ to 5′ trimming of several miRNA*s but not miRNAs in ATRM2 compromised backgrounds. These data suggest an action of ATRM2 on miRNA/miRNA* duplexes, and the existence of an unknown exoribonuclease for specific trimming of miRNA*. This asymmetric effect on miRNA/miRNA* is likely related to Argonaute (AGO) proteins, which can distinguish miRNAs from miRNA*s. Finally, we show that ATRM2 colocalizes and physically interacts with Argonaute 1 (AGO1). Taken together, our results suggest that ATRM2 may be involved in the surveillance of unmethylated miRNA/miRNA* duplexes during the initiation step of RNA-induced silencing complex assembly.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Degradation</subject><subject>DNA methylation</subject><subject>Exoribonucleases - genetics</subject><subject>Exoribonucleases - metabolism</subject><subject>Fertility</subject><subject>Flowers & plants</subject><subject>Methylation</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Mutation</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>RNA-induced silencing complex</subject><subject>RNA-mediated interference</subject><subject>Trimming</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdks9u1DAQxi0EokvhzAlkiQuXdMeO7dgXpFW3_JEqkBCcLcdxWq-SeLEdRG48E4_Ek-BlSwtc5jvMz9_M6DNCTwmcEWjq9X4y6Yw0lCjSEMLvoRUBRSrBFNxHKwDaVJJRdoIepbQDAMUlPEQnVClGOFcrFLbuKprOZB8mHHo8T6PL18tgsuvw6D--36x_14TbBRu8vdhulyove4frn99_4BwwP6j7FqJvwzTbwZnk8CZHP44uYor9hDfRtL4L--TTY_SgN0NyT270FH1-ffHp_G11-eHNu_PNZWUZq3NlOJXCCdNLRxglxjaWEwLc9bIRtapNq3poGW172SkLVNFOdLaIIES00tan6NXRdz-3o-usm3I0g96XtUxcdDBe_9uZ_LW-Cl-1ACY5bYrByxuDGL7MLmU9-mTdMJjJhTlpClxxUTeCFPTFf-guzHEq52lKAKSEmslCrY-UjSGl6PrbZQjoQ5j6EKa-C7O8eP73Dbf8n_QK8OwI7FIO8a4vePkFZeQvP5amOg</recordid><startdate>20180710</startdate><enddate>20180710</enddate><creator>Wang, Xiaoyan</creator><creator>Wang, Yuan</creator><creator>Dou, Yongchao</creator><creator>Chen, Lu</creator><creator>Wang, Junli</creator><creator>Jiang, Ning</creator><creator>Guo, Chunce</creator><creator>Yao, Qingqing</creator><creator>Wang, Chizao</creator><creator>Liu, Lin</creator><creator>Yu, Bin</creator><creator>Zheng, Binglian</creator><creator>Chekanova, Julia A.</creator><creator>Ma, Jinbiao</creator><creator>Ren, Guodong</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1895-7578</orcidid><orcidid>https://orcid.org/0000-0002-0232-1786</orcidid></search><sort><creationdate>20180710</creationdate><title>Degradation of unmethylated miRNA/miRNAs by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis</title><author>Wang, Xiaoyan ; Wang, Yuan ; Dou, Yongchao ; Chen, Lu ; Wang, Junli ; Jiang, Ning ; Guo, Chunce ; Yao, Qingqing ; Wang, Chizao ; Liu, Lin ; Yu, Bin ; Zheng, Binglian ; Chekanova, Julia A. ; Ma, Jinbiao ; Ren, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a5286e6af8e1421ac7c51105ef876393ab9f0b42bf8d9c0292d6dc2926116b8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Degradation</topic><topic>DNA methylation</topic><topic>Exoribonucleases - genetics</topic><topic>Exoribonucleases - metabolism</topic><topic>Fertility</topic><topic>Flowers & plants</topic><topic>Methylation</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Mutation</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>RNA-induced silencing complex</topic><topic>RNA-mediated interference</topic><topic>Trimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyan</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Dou, Yongchao</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Wang, Junli</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Guo, Chunce</creatorcontrib><creatorcontrib>Yao, Qingqing</creatorcontrib><creatorcontrib>Wang, Chizao</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Zheng, Binglian</creatorcontrib><creatorcontrib>Chekanova, Julia A.</creatorcontrib><creatorcontrib>Ma, Jinbiao</creatorcontrib><creatorcontrib>Ren, Guodong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoyan</au><au>Wang, Yuan</au><au>Dou, Yongchao</au><au>Chen, Lu</au><au>Wang, Junli</au><au>Jiang, Ning</au><au>Guo, Chunce</au><au>Yao, Qingqing</au><au>Wang, Chizao</au><au>Liu, Lin</au><au>Yu, Bin</au><au>Zheng, Binglian</au><au>Chekanova, Julia A.</au><au>Ma, Jinbiao</au><au>Ren, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation of unmethylated miRNA/miRNAs by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-07-10</date><risdate>2018</risdate><volume>115</volume><issue>28</issue><spage>E6659</spage><epage>E6667</epage><pages>E6659-E6667</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The 3′ end methylation catalyzed by HUA Enhancer 1 (HEN1) is a crucial step of small RNA stabilization in plants, yet how unmethylated small RNAs undergo degradation remains largely unknown. Using a reverse genetic approach, we here show that Atrimmer 2 (ATRM2), a DEDDy-type 3′ to 5′ exoribonuclease, acts in the degradation of unmethylated miRNAs and miRNA*s in Arabidopsis. Loss-of-function mutations in ATRM2 partially suppress the morphological defects caused by HEN1 malfunction, with restored levels of a subset of miRNAs and receded expression of corresponding miRNA targets. Dysfunction of ATRM2 has negligible effect on miRNA trimming, and further increase the fertility of hen1 heso1 urt1, a mutant with an almost complete abolishment of miRNA uridylation, indicating that ATRM2 may neither be involved in 3′ to 5′ trimming nor be the enzyme that specifically degrades uridylated miRNAs. Notably, the fold changes of miRNAs and their corresponding miRNA*s were significantly correlated in hen1 atrm2 versus hen1. Unexpectedly, we observed a marked increase of 3′ to 5′ trimming of several miRNA*s but not miRNAs in ATRM2 compromised backgrounds. These data suggest an action of ATRM2 on miRNA/miRNA* duplexes, and the existence of an unknown exoribonuclease for specific trimming of miRNA*. This asymmetric effect on miRNA/miRNA* is likely related to Argonaute (AGO) proteins, which can distinguish miRNAs from miRNA*s. Finally, we show that ATRM2 colocalizes and physically interacts with Argonaute 1 (AGO1). Taken together, our results suggest that ATRM2 may be involved in the surveillance of unmethylated miRNA/miRNA* duplexes during the initiation step of RNA-induced silencing complex assembly.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29941559</pmid><doi>10.1073/pnas.1721917115</doi><orcidid>https://orcid.org/0000-0002-1895-7578</orcidid><orcidid>https://orcid.org/0000-0002-0232-1786</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (28), p.E6659-E6667 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048527 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biological Sciences Degradation DNA methylation Exoribonucleases - genetics Exoribonucleases - metabolism Fertility Flowers & plants Methylation MicroRNAs - genetics MicroRNAs - metabolism miRNA Mutation PNAS Plus Proteins Ribonucleic acid RNA RNA, Plant - genetics RNA, Plant - metabolism RNA-induced silencing complex RNA-mediated interference Trimming |
title | Degradation of unmethylated miRNA/miRNAs by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20of%20unmethylated%20miRNA/miRNAs%20by%20a%20DEDDy-type%203%E2%80%B2%20to%205%E2%80%B2%20exoribonuclease%20Atrimmer%202%20in%20Arabidopsis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Xiaoyan&rft.date=2018-07-10&rft.volume=115&rft.issue=28&rft.spage=E6659&rft.epage=E6667&rft.pages=E6659-E6667&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1721917115&rft_dat=%3Cjstor_pubme%3E26510948%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-a5286e6af8e1421ac7c51105ef876393ab9f0b42bf8d9c0292d6dc2926116b8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2100880348&rft_id=info:pmid/29941559&rft_jstor_id=26510948&rfr_iscdi=true |