Loading…

Recovery of Cardiac Remodeling and Dysmetabolism by Pancreatic Islet Injury Improvement in Diabetic Rats after Yacon Leaf Extract Treatment

Yacon (Smallanthus sonchifolius) is a native Andean plant rich in phenolic compounds, and its effects on dysmetabolism and cardiomyopathy in diabetic rats was evaluated. The rats (10/group) were allocated as follows: C, controls; C + Y, controls treated with Yacon leaf extract (YLE); DM, diabetic co...

Full description

Saved in:
Bibliographic Details
Published in:Oxidative medicine and cellular longevity 2018-01, Vol.2018 (2018), p.1-10
Main Authors: Freire, Paula Paccielli, Corrêa, Camila Renata, Fabro, Alexandre Todorovic, Carvalho, Robson Francisco, de Araújo Machado, Luiz Henrique, Gonçalves, Bianca Mariani, Corrente, José Eduardo, Ferraz, Ana Paula C. R., Cury, Sarah Santiloni, dos Santos, Klinsmann Carolo, Nakamune, Ana Cláudia de Melo Stevanato
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Yacon (Smallanthus sonchifolius) is a native Andean plant rich in phenolic compounds, and its effects on dysmetabolism and cardiomyopathy in diabetic rats was evaluated. The rats (10/group) were allocated as follows: C, controls; C + Y, controls treated with Yacon leaf extract (YLE); DM, diabetic controls; and DM + Y, diabetic rats treated with YLE. Type 1 diabetes (T1DM) was induced by the administration of streptozotocin (STZ; 40 mg−1/kg body weight, single dose, i.p.), and treated groups received 100 mg/kg body weight YLE daily via gavage for 30 d. The YLE group shows an improvement in dysmetabolism and cardiomyopathy in the diabetic condition (DM versus DM + Y) promoting a significant reduction of glycemia by 63.39%, an increase in insulin concentration by 49.30%, and a decrease in serum triacylglycerol and fatty acid contents by 0.39- and 0.43-fold, respectively, by ameliorating the pancreatic islet injury, as well as increasing the activity of the antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) and decreasing the fibrosis and cellular disorganization in cardiac tissue. The apparent benefits of YLE seem to be mediated by ameliorating dysmetabolism and oxidative stress in pancreatic and cardiac tissues.
ISSN:1942-0900
1942-0994
DOI:10.1155/2018/1821359