Loading…

On‐Surface Bottom‐Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior

On‐surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices....

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2018-07, Vol.57 (28), p.8582-8586
Main Authors: Ruiz del Árbol, Nerea, Palacio, Irene, Otero‐Irurueta, Gonzalo, Martínez, José I., de Andrés, Pedro L., Stetsovych, Oleksander, Moro‐Lagares, María, Mutombo, Pingo, Svec, Martin, Jelínek, Pavel, Cossaro, Albano, Floreano, Luca, Ellis, Gary J., López, María F., Martín‐Gago, José A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5050-4353a86b4e5f5a9e83e4a5e2755aea26139917c764fe04d524371221aef04e4e3
cites cdi_FETCH-LOGICAL-c5050-4353a86b4e5f5a9e83e4a5e2755aea26139917c764fe04d524371221aef04e4e3
container_end_page 8586
container_issue 28
container_start_page 8582
container_title Angewandte Chemie International Edition
container_volume 57
creator Ruiz del Árbol, Nerea
Palacio, Irene
Otero‐Irurueta, Gonzalo
Martínez, José I.
de Andrés, Pedro L.
Stetsovych, Oleksander
Moro‐Lagares, María
Mutombo, Pingo
Svec, Martin
Jelínek, Pavel
Cossaro, Albano
Floreano, Luca
Ellis, Gary J.
López, María F.
Martín‐Gago, José A.
description On‐surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on‐surface chemistry route has now been used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo‐character at the nitrogen sites. A facile on‐surface route was used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using in situ surface characterization and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends.
doi_str_mv 10.1002/anie.201804110
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6055674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064170948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5050-4353a86b4e5f5a9e83e4a5e2755aea26139917c764fe04d524371221aef04e4e3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhi0Eyhe0lGglGpo9xl9rbxPp8gFEipLiSEVhOZvZnKM9e2PvHrpU-Qn5jfwSHF24BBqqGXkeP5rRS8h7ChMKwD5b73DCgGoQlMIrskMloyVXir_OveC8VFrSbbKb0k3mtYZqi2yzuuZUU7VDfpz7X_cPszG2tsHiIAxDWOSHi76Yrfwwx-RSEdpieuc8FkcY3dIObompOHKp7-zK-etiNsSQy7RpsB9CLA5wbpcuxLfkTWu7hO-e6h65-HL8_fBbeXr-9eRwelo2EiSUgktudXUpULbS1qg5CiuRKSktWlZRXtdUNaoSLYK4kkxwRRmjFlsQKJDvkf21tx8vF3jVoB-i7Uwf3cLGlQnWmb8n3s3NdViaCqSslMiCT0-CGG5HTINZuNRg11mPYUyGgdQSmIA6ox__QW_CGH0-L1OVoApqoTM1WVNNDClFbDfLUDCPuZnH3Mwmt_zhw8sTNvifoDJQr4GfrsPVf3RmenZy_Cz_DZ5Oppg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064170948</pqid></control><display><type>article</type><title>On‐Surface Bottom‐Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ruiz del Árbol, Nerea ; Palacio, Irene ; Otero‐Irurueta, Gonzalo ; Martínez, José I. ; de Andrés, Pedro L. ; Stetsovych, Oleksander ; Moro‐Lagares, María ; Mutombo, Pingo ; Svec, Martin ; Jelínek, Pavel ; Cossaro, Albano ; Floreano, Luca ; Ellis, Gary J. ; López, María F. ; Martín‐Gago, José A.</creator><creatorcontrib>Ruiz del Árbol, Nerea ; Palacio, Irene ; Otero‐Irurueta, Gonzalo ; Martínez, José I. ; de Andrés, Pedro L. ; Stetsovych, Oleksander ; Moro‐Lagares, María ; Mutombo, Pingo ; Svec, Martin ; Jelínek, Pavel ; Cossaro, Albano ; Floreano, Luca ; Ellis, Gary J. ; López, María F. ; Martín‐Gago, José A.</creatorcontrib><description>On‐surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on‐surface chemistry route has now been used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo‐character at the nitrogen sites. A facile on‐surface route was used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using in situ surface characterization and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201804110</identifier><identifier>PMID: 29931817</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>ab initio calculations ; Aminophenol ; Carbonyls ; charge transfer ; Chemical speciation ; Chemical synthesis ; Communication ; Communications ; Conjugation ; Copper ; Electronic structure ; Interfaces ; Molecular chains ; Optoelectronic devices ; Organic chemistry ; photoelectron spectroscopy ; scanning probe microscopy ; Surface chemistry ; Surface properties</subject><ispartof>Angewandte Chemie International Edition, 2018-07, Vol.57 (28), p.8582-8586</ispartof><rights>2018 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2018. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5050-4353a86b4e5f5a9e83e4a5e2755aea26139917c764fe04d524371221aef04e4e3</citedby><cites>FETCH-LOGICAL-c5050-4353a86b4e5f5a9e83e4a5e2755aea26139917c764fe04d524371221aef04e4e3</cites><orcidid>0000-0003-2663-491X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29931817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz del Árbol, Nerea</creatorcontrib><creatorcontrib>Palacio, Irene</creatorcontrib><creatorcontrib>Otero‐Irurueta, Gonzalo</creatorcontrib><creatorcontrib>Martínez, José I.</creatorcontrib><creatorcontrib>de Andrés, Pedro L.</creatorcontrib><creatorcontrib>Stetsovych, Oleksander</creatorcontrib><creatorcontrib>Moro‐Lagares, María</creatorcontrib><creatorcontrib>Mutombo, Pingo</creatorcontrib><creatorcontrib>Svec, Martin</creatorcontrib><creatorcontrib>Jelínek, Pavel</creatorcontrib><creatorcontrib>Cossaro, Albano</creatorcontrib><creatorcontrib>Floreano, Luca</creatorcontrib><creatorcontrib>Ellis, Gary J.</creatorcontrib><creatorcontrib>López, María F.</creatorcontrib><creatorcontrib>Martín‐Gago, José A.</creatorcontrib><title>On‐Surface Bottom‐Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>On‐surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on‐surface chemistry route has now been used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo‐character at the nitrogen sites. A facile on‐surface route was used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using in situ surface characterization and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends.</description><subject>ab initio calculations</subject><subject>Aminophenol</subject><subject>Carbonyls</subject><subject>charge transfer</subject><subject>Chemical speciation</subject><subject>Chemical synthesis</subject><subject>Communication</subject><subject>Communications</subject><subject>Conjugation</subject><subject>Copper</subject><subject>Electronic structure</subject><subject>Interfaces</subject><subject>Molecular chains</subject><subject>Optoelectronic devices</subject><subject>Organic chemistry</subject><subject>photoelectron spectroscopy</subject><subject>scanning probe microscopy</subject><subject>Surface chemistry</subject><subject>Surface properties</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkT1vFDEQhi0Eyhe0lGglGpo9xl9rbxPp8gFEipLiSEVhOZvZnKM9e2PvHrpU-Qn5jfwSHF24BBqqGXkeP5rRS8h7ChMKwD5b73DCgGoQlMIrskMloyVXir_OveC8VFrSbbKb0k3mtYZqi2yzuuZUU7VDfpz7X_cPszG2tsHiIAxDWOSHi76Yrfwwx-RSEdpieuc8FkcY3dIObompOHKp7-zK-etiNsSQy7RpsB9CLA5wbpcuxLfkTWu7hO-e6h65-HL8_fBbeXr-9eRwelo2EiSUgktudXUpULbS1qg5CiuRKSktWlZRXtdUNaoSLYK4kkxwRRmjFlsQKJDvkf21tx8vF3jVoB-i7Uwf3cLGlQnWmb8n3s3NdViaCqSslMiCT0-CGG5HTINZuNRg11mPYUyGgdQSmIA6ox__QW_CGH0-L1OVoApqoTM1WVNNDClFbDfLUDCPuZnH3Mwmt_zhw8sTNvifoDJQr4GfrsPVf3RmenZy_Cz_DZ5Oppg</recordid><startdate>20180709</startdate><enddate>20180709</enddate><creator>Ruiz del Árbol, Nerea</creator><creator>Palacio, Irene</creator><creator>Otero‐Irurueta, Gonzalo</creator><creator>Martínez, José I.</creator><creator>de Andrés, Pedro L.</creator><creator>Stetsovych, Oleksander</creator><creator>Moro‐Lagares, María</creator><creator>Mutombo, Pingo</creator><creator>Svec, Martin</creator><creator>Jelínek, Pavel</creator><creator>Cossaro, Albano</creator><creator>Floreano, Luca</creator><creator>Ellis, Gary J.</creator><creator>López, María F.</creator><creator>Martín‐Gago, José A.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2663-491X</orcidid></search><sort><creationdate>20180709</creationdate><title>On‐Surface Bottom‐Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior</title><author>Ruiz del Árbol, Nerea ; Palacio, Irene ; Otero‐Irurueta, Gonzalo ; Martínez, José I. ; de Andrés, Pedro L. ; Stetsovych, Oleksander ; Moro‐Lagares, María ; Mutombo, Pingo ; Svec, Martin ; Jelínek, Pavel ; Cossaro, Albano ; Floreano, Luca ; Ellis, Gary J. ; López, María F. ; Martín‐Gago, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5050-4353a86b4e5f5a9e83e4a5e2755aea26139917c764fe04d524371221aef04e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ab initio calculations</topic><topic>Aminophenol</topic><topic>Carbonyls</topic><topic>charge transfer</topic><topic>Chemical speciation</topic><topic>Chemical synthesis</topic><topic>Communication</topic><topic>Communications</topic><topic>Conjugation</topic><topic>Copper</topic><topic>Electronic structure</topic><topic>Interfaces</topic><topic>Molecular chains</topic><topic>Optoelectronic devices</topic><topic>Organic chemistry</topic><topic>photoelectron spectroscopy</topic><topic>scanning probe microscopy</topic><topic>Surface chemistry</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz del Árbol, Nerea</creatorcontrib><creatorcontrib>Palacio, Irene</creatorcontrib><creatorcontrib>Otero‐Irurueta, Gonzalo</creatorcontrib><creatorcontrib>Martínez, José I.</creatorcontrib><creatorcontrib>de Andrés, Pedro L.</creatorcontrib><creatorcontrib>Stetsovych, Oleksander</creatorcontrib><creatorcontrib>Moro‐Lagares, María</creatorcontrib><creatorcontrib>Mutombo, Pingo</creatorcontrib><creatorcontrib>Svec, Martin</creatorcontrib><creatorcontrib>Jelínek, Pavel</creatorcontrib><creatorcontrib>Cossaro, Albano</creatorcontrib><creatorcontrib>Floreano, Luca</creatorcontrib><creatorcontrib>Ellis, Gary J.</creatorcontrib><creatorcontrib>López, María F.</creatorcontrib><creatorcontrib>Martín‐Gago, José A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz del Árbol, Nerea</au><au>Palacio, Irene</au><au>Otero‐Irurueta, Gonzalo</au><au>Martínez, José I.</au><au>de Andrés, Pedro L.</au><au>Stetsovych, Oleksander</au><au>Moro‐Lagares, María</au><au>Mutombo, Pingo</au><au>Svec, Martin</au><au>Jelínek, Pavel</au><au>Cossaro, Albano</au><au>Floreano, Luca</au><au>Ellis, Gary J.</au><au>López, María F.</au><au>Martín‐Gago, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On‐Surface Bottom‐Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-07-09</date><risdate>2018</risdate><volume>57</volume><issue>28</issue><spage>8582</spage><epage>8586</epage><pages>8582-8586</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>On‐surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on‐surface chemistry route has now been used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo‐character at the nitrogen sites. A facile on‐surface route was used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using in situ surface characterization and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29931817</pmid><doi>10.1002/anie.201804110</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2663-491X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-07, Vol.57 (28), p.8582-8586
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6055674
source Wiley-Blackwell Read & Publish Collection
subjects ab initio calculations
Aminophenol
Carbonyls
charge transfer
Chemical speciation
Chemical synthesis
Communication
Communications
Conjugation
Copper
Electronic structure
Interfaces
Molecular chains
Optoelectronic devices
Organic chemistry
photoelectron spectroscopy
scanning probe microscopy
Surface chemistry
Surface properties
title On‐Surface Bottom‐Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%E2%80%90Surface%20Bottom%E2%80%90Up%20Synthesis%20of%20Azine%20Derivatives%20Displaying%20Strong%20Acceptor%20Behavior&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ruiz%E2%80%85del%E2%80%85%C3%81rbol,%20Nerea&rft.date=2018-07-09&rft.volume=57&rft.issue=28&rft.spage=8582&rft.epage=8586&rft.pages=8582-8586&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201804110&rft_dat=%3Cproquest_pubme%3E2064170948%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5050-4353a86b4e5f5a9e83e4a5e2755aea26139917c764fe04d524371221aef04e4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2064170948&rft_id=info:pmid/29931817&rfr_iscdi=true