Loading…
Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity
Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides...
Saved in:
Published in: | Scientific reports 2018-07, Vol.8 (1), p.11152-11, Article 11152 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 11152 |
container_title | Scientific reports |
container_volume | 8 |
creator | Fujii, Susumu Yoshiya, Masato Fisher, Craig A. J. |
description | Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO
2
layers in layered cobaltite thermoelectrics Na
x
CoO
2
and Ca
3
Co
4
O
9
are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use. |
doi_str_mv | 10.1038/s41598-018-29259-z |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6057949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076239691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3</originalsourceid><addsrcrecordid>eNp9kV1vFCEYhYnR2Kb2D3hhJvHGm1FggB1uTJqNX8kmRq3eEj7e2aWZhRWYJtNfL9OttXohNxDe5xw4OQg9J_g1wV3_JjPCZd9i0rdUUi7bm0folGLGW9pR-vjB-QSd53yF6-JUMiKfopMOY0ZZz07R_GXSofhh9mHbXISdTvsYvG1-eJN08THkxofmcgf1HkawJdXhRs-QwDXraPRYfIHc6OAWyqfmaxxh0XybDocEOS_Gt3o9VkFwky3-2pf5GXoy6DHD-d1-hr6_f3e5_thuPn_4tL7YtJatWGlBWCccc5oJwwR1K6NpbwUVwgyyr5msAYIxGZjARlKDDXeOaie6CptOd2fo7dH3MJk9OAuhJD2qQ_J7nWYVtVd_T4LfqW28VgLzlWSyGry6M0jx5wS5qL3PFsZRB4hTVhSvBO2kkKSiL_9Br-KUQo23UJxTxjGrFD1SNsWcEwz3nyFYLeWqY7mqlqtuy1U3VfTiYYx7ye8qK9AdgVxHYQvpz9v_sf0Fv9Szcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075524504</pqid></control><display><type>article</type><title>Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Fujii, Susumu ; Yoshiya, Masato ; Fisher, Craig A. J.</creator><creatorcontrib>Fujii, Susumu ; Yoshiya, Masato ; Fisher, Craig A. J.</creatorcontrib><description>Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO
2
layers in layered cobaltite thermoelectrics Na
x
CoO
2
and Ca
3
Co
4
O
9
are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-29259-z</identifier><identifier>PMID: 30042484</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/1034/1035 ; 639/4077/4072 ; Conduction ; Heat conductivity ; Heat transport ; Humanities and Social Sciences ; multidisciplinary ; Oxides ; Science ; Science (multidisciplinary) ; Thermal conductivity ; Vibrations</subject><ispartof>Scientific reports, 2018-07, Vol.8 (1), p.11152-11, Article 11152</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3</citedby><cites>FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3</cites><orcidid>0000-0002-0999-5791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2075524504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2075524504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30042484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujii, Susumu</creatorcontrib><creatorcontrib>Yoshiya, Masato</creatorcontrib><creatorcontrib>Fisher, Craig A. J.</creatorcontrib><title>Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO
2
layers in layered cobaltite thermoelectrics Na
x
CoO
2
and Ca
3
Co
4
O
9
are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use.</description><subject>119/118</subject><subject>639/301/1034/1035</subject><subject>639/4077/4072</subject><subject>Conduction</subject><subject>Heat conductivity</subject><subject>Heat transport</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Oxides</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thermal conductivity</subject><subject>Vibrations</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kV1vFCEYhYnR2Kb2D3hhJvHGm1FggB1uTJqNX8kmRq3eEj7e2aWZhRWYJtNfL9OttXohNxDe5xw4OQg9J_g1wV3_JjPCZd9i0rdUUi7bm0folGLGW9pR-vjB-QSd53yF6-JUMiKfopMOY0ZZz07R_GXSofhh9mHbXISdTvsYvG1-eJN08THkxofmcgf1HkawJdXhRs-QwDXraPRYfIHc6OAWyqfmaxxh0XybDocEOS_Gt3o9VkFwky3-2pf5GXoy6DHD-d1-hr6_f3e5_thuPn_4tL7YtJatWGlBWCccc5oJwwR1K6NpbwUVwgyyr5msAYIxGZjARlKDDXeOaie6CptOd2fo7dH3MJk9OAuhJD2qQ_J7nWYVtVd_T4LfqW28VgLzlWSyGry6M0jx5wS5qL3PFsZRB4hTVhSvBO2kkKSiL_9Br-KUQo23UJxTxjGrFD1SNsWcEwz3nyFYLeWqY7mqlqtuy1U3VfTiYYx7ye8qK9AdgVxHYQvpz9v_sf0Fv9Szcw</recordid><startdate>20180724</startdate><enddate>20180724</enddate><creator>Fujii, Susumu</creator><creator>Yoshiya, Masato</creator><creator>Fisher, Craig A. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0999-5791</orcidid></search><sort><creationdate>20180724</creationdate><title>Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity</title><author>Fujii, Susumu ; Yoshiya, Masato ; Fisher, Craig A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>119/118</topic><topic>639/301/1034/1035</topic><topic>639/4077/4072</topic><topic>Conduction</topic><topic>Heat conductivity</topic><topic>Heat transport</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Oxides</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thermal conductivity</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujii, Susumu</creatorcontrib><creatorcontrib>Yoshiya, Masato</creatorcontrib><creatorcontrib>Fisher, Craig A. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujii, Susumu</au><au>Yoshiya, Masato</au><au>Fisher, Craig A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-07-24</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>11152</spage><epage>11</epage><pages>11152-11</pages><artnum>11152</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO
2
layers in layered cobaltite thermoelectrics Na
x
CoO
2
and Ca
3
Co
4
O
9
are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30042484</pmid><doi>10.1038/s41598-018-29259-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0999-5791</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-07, Vol.8 (1), p.11152-11, Article 11152 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6057949 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 639/301/1034/1035 639/4077/4072 Conduction Heat conductivity Heat transport Humanities and Social Sciences multidisciplinary Oxides Science Science (multidisciplinary) Thermal conductivity Vibrations |
title | Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Anharmonic%20Vibrations%20in%20Thermoelectric%20Layered%20Cobaltites%20and%20Their%20Role%20in%20Suppressing%20Thermal%20Conductivity&rft.jtitle=Scientific%20reports&rft.au=Fujii,%20Susumu&rft.date=2018-07-24&rft.volume=8&rft.issue=1&rft.spage=11152&rft.epage=11&rft.pages=11152-11&rft.artnum=11152&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-29259-z&rft_dat=%3Cproquest_pubme%3E2076239691%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075524504&rft_id=info:pmid/30042484&rfr_iscdi=true |