Loading…

Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity

Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-07, Vol.8 (1), p.11152-11, Article 11152
Main Authors: Fujii, Susumu, Yoshiya, Masato, Fisher, Craig A. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3
cites cdi_FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3
container_end_page 11
container_issue 1
container_start_page 11152
container_title Scientific reports
container_volume 8
creator Fujii, Susumu
Yoshiya, Masato
Fisher, Craig A. J.
description Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO 2 layers in layered cobaltite thermoelectrics Na x CoO 2 and Ca 3 Co 4 O 9 are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use.
doi_str_mv 10.1038/s41598-018-29259-z
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6057949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076239691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3</originalsourceid><addsrcrecordid>eNp9kV1vFCEYhYnR2Kb2D3hhJvHGm1FggB1uTJqNX8kmRq3eEj7e2aWZhRWYJtNfL9OttXohNxDe5xw4OQg9J_g1wV3_JjPCZd9i0rdUUi7bm0folGLGW9pR-vjB-QSd53yF6-JUMiKfopMOY0ZZz07R_GXSofhh9mHbXISdTvsYvG1-eJN08THkxofmcgf1HkawJdXhRs-QwDXraPRYfIHc6OAWyqfmaxxh0XybDocEOS_Gt3o9VkFwky3-2pf5GXoy6DHD-d1-hr6_f3e5_thuPn_4tL7YtJatWGlBWCccc5oJwwR1K6NpbwUVwgyyr5msAYIxGZjARlKDDXeOaie6CptOd2fo7dH3MJk9OAuhJD2qQ_J7nWYVtVd_T4LfqW28VgLzlWSyGry6M0jx5wS5qL3PFsZRB4hTVhSvBO2kkKSiL_9Br-KUQo23UJxTxjGrFD1SNsWcEwz3nyFYLeWqY7mqlqtuy1U3VfTiYYx7ye8qK9AdgVxHYQvpz9v_sf0Fv9Szcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075524504</pqid></control><display><type>article</type><title>Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Fujii, Susumu ; Yoshiya, Masato ; Fisher, Craig A. J.</creator><creatorcontrib>Fujii, Susumu ; Yoshiya, Masato ; Fisher, Craig A. J.</creatorcontrib><description>Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO 2 layers in layered cobaltite thermoelectrics Na x CoO 2 and Ca 3 Co 4 O 9 are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-29259-z</identifier><identifier>PMID: 30042484</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/1034/1035 ; 639/4077/4072 ; Conduction ; Heat conductivity ; Heat transport ; Humanities and Social Sciences ; multidisciplinary ; Oxides ; Science ; Science (multidisciplinary) ; Thermal conductivity ; Vibrations</subject><ispartof>Scientific reports, 2018-07, Vol.8 (1), p.11152-11, Article 11152</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3</citedby><cites>FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3</cites><orcidid>0000-0002-0999-5791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2075524504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2075524504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30042484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujii, Susumu</creatorcontrib><creatorcontrib>Yoshiya, Masato</creatorcontrib><creatorcontrib>Fisher, Craig A. J.</creatorcontrib><title>Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO 2 layers in layered cobaltite thermoelectrics Na x CoO 2 and Ca 3 Co 4 O 9 are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use.</description><subject>119/118</subject><subject>639/301/1034/1035</subject><subject>639/4077/4072</subject><subject>Conduction</subject><subject>Heat conductivity</subject><subject>Heat transport</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Oxides</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thermal conductivity</subject><subject>Vibrations</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kV1vFCEYhYnR2Kb2D3hhJvHGm1FggB1uTJqNX8kmRq3eEj7e2aWZhRWYJtNfL9OttXohNxDe5xw4OQg9J_g1wV3_JjPCZd9i0rdUUi7bm0folGLGW9pR-vjB-QSd53yF6-JUMiKfopMOY0ZZz07R_GXSofhh9mHbXISdTvsYvG1-eJN08THkxofmcgf1HkawJdXhRs-QwDXraPRYfIHc6OAWyqfmaxxh0XybDocEOS_Gt3o9VkFwky3-2pf5GXoy6DHD-d1-hr6_f3e5_thuPn_4tL7YtJatWGlBWCccc5oJwwR1K6NpbwUVwgyyr5msAYIxGZjARlKDDXeOaie6CptOd2fo7dH3MJk9OAuhJD2qQ_J7nWYVtVd_T4LfqW28VgLzlWSyGry6M0jx5wS5qL3PFsZRB4hTVhSvBO2kkKSiL_9Br-KUQo23UJxTxjGrFD1SNsWcEwz3nyFYLeWqY7mqlqtuy1U3VfTiYYx7ye8qK9AdgVxHYQvpz9v_sf0Fv9Szcw</recordid><startdate>20180724</startdate><enddate>20180724</enddate><creator>Fujii, Susumu</creator><creator>Yoshiya, Masato</creator><creator>Fisher, Craig A. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0999-5791</orcidid></search><sort><creationdate>20180724</creationdate><title>Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity</title><author>Fujii, Susumu ; Yoshiya, Masato ; Fisher, Craig A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>119/118</topic><topic>639/301/1034/1035</topic><topic>639/4077/4072</topic><topic>Conduction</topic><topic>Heat conductivity</topic><topic>Heat transport</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Oxides</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thermal conductivity</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujii, Susumu</creatorcontrib><creatorcontrib>Yoshiya, Masato</creatorcontrib><creatorcontrib>Fisher, Craig A. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujii, Susumu</au><au>Yoshiya, Masato</au><au>Fisher, Craig A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-07-24</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>11152</spage><epage>11</epage><pages>11152-11</pages><artnum>11152</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO 2 layers in layered cobaltite thermoelectrics Na x CoO 2 and Ca 3 Co 4 O 9 are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30042484</pmid><doi>10.1038/s41598-018-29259-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0999-5791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-07, Vol.8 (1), p.11152-11, Article 11152
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6057949
source PMC (PubMed Central); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
639/301/1034/1035
639/4077/4072
Conduction
Heat conductivity
Heat transport
Humanities and Social Sciences
multidisciplinary
Oxides
Science
Science (multidisciplinary)
Thermal conductivity
Vibrations
title Quantifying Anharmonic Vibrations in Thermoelectric Layered Cobaltites and Their Role in Suppressing Thermal Conductivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Anharmonic%20Vibrations%20in%20Thermoelectric%20Layered%20Cobaltites%20and%20Their%20Role%20in%20Suppressing%20Thermal%20Conductivity&rft.jtitle=Scientific%20reports&rft.au=Fujii,%20Susumu&rft.date=2018-07-24&rft.volume=8&rft.issue=1&rft.spage=11152&rft.epage=11&rft.pages=11152-11&rft.artnum=11152&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-29259-z&rft_dat=%3Cproquest_pubme%3E2076239691%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-e6cd6d4da46b462d7ba28c6266bf98005cbe1001f460b92b0b5dd2ad6362db3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075524504&rft_id=info:pmid/30042484&rfr_iscdi=true