Loading…
Comprehensive Characterization of Alternative Polyadenylation in Human Cancer
Alternative polyadenylation (APA) is emerging as a major post-transcriptional mechanism for gene regulation, and dysregulation of APA contributes to several human diseases. However, the functional consequences of APA in human cancer are not fully understood. Particularly, there is no large-scale ana...
Saved in:
Published in: | JNCI : Journal of the National Cancer Institute 2018-04, Vol.110 (4), p.379-389 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-4039fa05fcb8b6471d53a1854249b543155dbd375cd5ef574a0962801ed8b9a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-4039fa05fcb8b6471d53a1854249b543155dbd375cd5ef574a0962801ed8b9a3 |
container_end_page | 389 |
container_issue | 4 |
container_start_page | 379 |
container_title | JNCI : Journal of the National Cancer Institute |
container_volume | 110 |
creator | Xiang, Yu Ye, Youqiong Lou, Yanyan Yang, Yang Cai, Chunyan Zhang, Zhao Mills, Tingting Chen, Ning-Yuan Kim, Yoonjin Muge Ozguc, Fatma Diao, Lixia Karmouty-Quintana, Harry Xia, Yang Kellems, Rodney E Chen, Zheng Blackburn, Michael R Yoo, Seung-Hee Shyu, Ann-Bin Mills, Gordon B Han, Leng |
description | Alternative polyadenylation (APA) is emerging as a major post-transcriptional mechanism for gene regulation, and dysregulation of APA contributes to several human diseases. However, the functional consequences of APA in human cancer are not fully understood. Particularly, there is no large-scale analysis in cancer cell lines.
We characterized the global APA profiles of 6398 patient samples across 17 cancer types from The Cancer Genome Atlas and 739 cancer cell lines from the Cancer Cell Line Encyclopedia. We built a linear regression model to explore the correlation between APA factors and APA events across different cancer types. We used Spearman correlation to assess the effects of APA events on drug sensitivity and the Wilcoxon rank-sum test or Cox proportional hazards model to identify clinically relevant APA events.
We revealed a striking global 3'UTR shortening in cancer cell lines compared with tumor samples. Our analysis further suggested PABPN1 as the master regulator in regulating APA profile across different cancer types. Furthermore, we showed that APA events could affect drug sensitivity, especially of drugs targeting chromatin modifiers. Finally, we identified 1971 clinically relevant APA events, as well as alterations of APA in clinically actionable genes, suggesting that analysis of the complexity of APA profiles could have clinical utility.
Our study highlights important roles for APA in human cancer, including reshaping cellular pathways and regulating specific gene expression, exemplifying the complex interplay between APA and other biological processes and yielding new insights into the action mechanism of cancer drugs. |
doi_str_mv | 10.1093/jnci/djx223 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6059203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961033765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-4039fa05fcb8b6471d53a1854249b543155dbd375cd5ef574a0962801ed8b9a3</originalsourceid><addsrcrecordid>eNpVkN1LwzAUxYMobk6ffJc-ClKXz7Z5EUZRJ0z0Ye8hTVOX0SYzaYfzr7ejc-h9uRzOj3MvB4BrBO8R5GS6tspMy_UXxuQEjBFNYIwRZKdgDCFO4yxL6QhchLCG_XBMz8EIcwQTxtEYvOau2Xi90jaYrY7ylfRStdqbb9kaZyNXRbO617aXvf_u6p0std3Vg21sNO8aaaNcWqX9JTirZB301WFPwPLpcZnP48Xb80s-W8SK0rSNKSS8kpBVqsiKhKaoZESijFFMecEoQYyVRUlSpkqmK5ZSCXmCM4h0mRVckgl4GGI3XdHoUmnbelmLjTeN9DvhpBH_HWtW4sNtRQIZx5D0AbeHAO8-Ox1a0ZigdF1Lq10XBOIJ6rE0YT16N6DKuxC8ro5nEBT7_sW-fzH039M3fz87sr-Fkx8s3oPq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961033765</pqid></control><display><type>article</type><title>Comprehensive Characterization of Alternative Polyadenylation in Human Cancer</title><source>Oxford Journals Online</source><creator>Xiang, Yu ; Ye, Youqiong ; Lou, Yanyan ; Yang, Yang ; Cai, Chunyan ; Zhang, Zhao ; Mills, Tingting ; Chen, Ning-Yuan ; Kim, Yoonjin ; Muge Ozguc, Fatma ; Diao, Lixia ; Karmouty-Quintana, Harry ; Xia, Yang ; Kellems, Rodney E ; Chen, Zheng ; Blackburn, Michael R ; Yoo, Seung-Hee ; Shyu, Ann-Bin ; Mills, Gordon B ; Han, Leng</creator><creatorcontrib>Xiang, Yu ; Ye, Youqiong ; Lou, Yanyan ; Yang, Yang ; Cai, Chunyan ; Zhang, Zhao ; Mills, Tingting ; Chen, Ning-Yuan ; Kim, Yoonjin ; Muge Ozguc, Fatma ; Diao, Lixia ; Karmouty-Quintana, Harry ; Xia, Yang ; Kellems, Rodney E ; Chen, Zheng ; Blackburn, Michael R ; Yoo, Seung-Hee ; Shyu, Ann-Bin ; Mills, Gordon B ; Han, Leng</creatorcontrib><description>Alternative polyadenylation (APA) is emerging as a major post-transcriptional mechanism for gene regulation, and dysregulation of APA contributes to several human diseases. However, the functional consequences of APA in human cancer are not fully understood. Particularly, there is no large-scale analysis in cancer cell lines.
We characterized the global APA profiles of 6398 patient samples across 17 cancer types from The Cancer Genome Atlas and 739 cancer cell lines from the Cancer Cell Line Encyclopedia. We built a linear regression model to explore the correlation between APA factors and APA events across different cancer types. We used Spearman correlation to assess the effects of APA events on drug sensitivity and the Wilcoxon rank-sum test or Cox proportional hazards model to identify clinically relevant APA events.
We revealed a striking global 3'UTR shortening in cancer cell lines compared with tumor samples. Our analysis further suggested PABPN1 as the master regulator in regulating APA profile across different cancer types. Furthermore, we showed that APA events could affect drug sensitivity, especially of drugs targeting chromatin modifiers. Finally, we identified 1971 clinically relevant APA events, as well as alterations of APA in clinically actionable genes, suggesting that analysis of the complexity of APA profiles could have clinical utility.
Our study highlights important roles for APA in human cancer, including reshaping cellular pathways and regulating specific gene expression, exemplifying the complex interplay between APA and other biological processes and yielding new insights into the action mechanism of cancer drugs.</description><identifier>ISSN: 0027-8874</identifier><identifier>EISSN: 1460-2105</identifier><identifier>DOI: 10.1093/jnci/djx223</identifier><identifier>PMID: 29106591</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>3' Untranslated Regions ; Biomarkers, Tumor - genetics ; Follow-Up Studies ; Gene Expression Regulation, Neoplastic ; Genome, Human ; High-Throughput Nucleotide Sequencing ; Humans ; Neoplasms - genetics ; Neoplasms - pathology ; Poly(A)-Binding Protein I - genetics ; Polyadenylation ; Prognosis ; RNA, Messenger - genetics ; Tumor Cells, Cultured</subject><ispartof>JNCI : Journal of the National Cancer Institute, 2018-04, Vol.110 (4), p.379-389</ispartof><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-4039fa05fcb8b6471d53a1854249b543155dbd375cd5ef574a0962801ed8b9a3</citedby><cites>FETCH-LOGICAL-c447t-4039fa05fcb8b6471d53a1854249b543155dbd375cd5ef574a0962801ed8b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29106591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Yu</creatorcontrib><creatorcontrib>Ye, Youqiong</creatorcontrib><creatorcontrib>Lou, Yanyan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Cai, Chunyan</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Mills, Tingting</creatorcontrib><creatorcontrib>Chen, Ning-Yuan</creatorcontrib><creatorcontrib>Kim, Yoonjin</creatorcontrib><creatorcontrib>Muge Ozguc, Fatma</creatorcontrib><creatorcontrib>Diao, Lixia</creatorcontrib><creatorcontrib>Karmouty-Quintana, Harry</creatorcontrib><creatorcontrib>Xia, Yang</creatorcontrib><creatorcontrib>Kellems, Rodney E</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Blackburn, Michael R</creatorcontrib><creatorcontrib>Yoo, Seung-Hee</creatorcontrib><creatorcontrib>Shyu, Ann-Bin</creatorcontrib><creatorcontrib>Mills, Gordon B</creatorcontrib><creatorcontrib>Han, Leng</creatorcontrib><title>Comprehensive Characterization of Alternative Polyadenylation in Human Cancer</title><title>JNCI : Journal of the National Cancer Institute</title><addtitle>J Natl Cancer Inst</addtitle><description>Alternative polyadenylation (APA) is emerging as a major post-transcriptional mechanism for gene regulation, and dysregulation of APA contributes to several human diseases. However, the functional consequences of APA in human cancer are not fully understood. Particularly, there is no large-scale analysis in cancer cell lines.
We characterized the global APA profiles of 6398 patient samples across 17 cancer types from The Cancer Genome Atlas and 739 cancer cell lines from the Cancer Cell Line Encyclopedia. We built a linear regression model to explore the correlation between APA factors and APA events across different cancer types. We used Spearman correlation to assess the effects of APA events on drug sensitivity and the Wilcoxon rank-sum test or Cox proportional hazards model to identify clinically relevant APA events.
We revealed a striking global 3'UTR shortening in cancer cell lines compared with tumor samples. Our analysis further suggested PABPN1 as the master regulator in regulating APA profile across different cancer types. Furthermore, we showed that APA events could affect drug sensitivity, especially of drugs targeting chromatin modifiers. Finally, we identified 1971 clinically relevant APA events, as well as alterations of APA in clinically actionable genes, suggesting that analysis of the complexity of APA profiles could have clinical utility.
Our study highlights important roles for APA in human cancer, including reshaping cellular pathways and regulating specific gene expression, exemplifying the complex interplay between APA and other biological processes and yielding new insights into the action mechanism of cancer drugs.</description><subject>3' Untranslated Regions</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Follow-Up Studies</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genome, Human</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Poly(A)-Binding Protein I - genetics</subject><subject>Polyadenylation</subject><subject>Prognosis</subject><subject>RNA, Messenger - genetics</subject><subject>Tumor Cells, Cultured</subject><issn>0027-8874</issn><issn>1460-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkN1LwzAUxYMobk6ffJc-ClKXz7Z5EUZRJ0z0Ye8hTVOX0SYzaYfzr7ejc-h9uRzOj3MvB4BrBO8R5GS6tspMy_UXxuQEjBFNYIwRZKdgDCFO4yxL6QhchLCG_XBMz8EIcwQTxtEYvOau2Xi90jaYrY7ylfRStdqbb9kaZyNXRbO617aXvf_u6p0std3Vg21sNO8aaaNcWqX9JTirZB301WFPwPLpcZnP48Xb80s-W8SK0rSNKSS8kpBVqsiKhKaoZESijFFMecEoQYyVRUlSpkqmK5ZSCXmCM4h0mRVckgl4GGI3XdHoUmnbelmLjTeN9DvhpBH_HWtW4sNtRQIZx5D0AbeHAO8-Ox1a0ZigdF1Lq10XBOIJ6rE0YT16N6DKuxC8ro5nEBT7_sW-fzH039M3fz87sr-Fkx8s3oPq</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Xiang, Yu</creator><creator>Ye, Youqiong</creator><creator>Lou, Yanyan</creator><creator>Yang, Yang</creator><creator>Cai, Chunyan</creator><creator>Zhang, Zhao</creator><creator>Mills, Tingting</creator><creator>Chen, Ning-Yuan</creator><creator>Kim, Yoonjin</creator><creator>Muge Ozguc, Fatma</creator><creator>Diao, Lixia</creator><creator>Karmouty-Quintana, Harry</creator><creator>Xia, Yang</creator><creator>Kellems, Rodney E</creator><creator>Chen, Zheng</creator><creator>Blackburn, Michael R</creator><creator>Yoo, Seung-Hee</creator><creator>Shyu, Ann-Bin</creator><creator>Mills, Gordon B</creator><creator>Han, Leng</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180401</creationdate><title>Comprehensive Characterization of Alternative Polyadenylation in Human Cancer</title><author>Xiang, Yu ; Ye, Youqiong ; Lou, Yanyan ; Yang, Yang ; Cai, Chunyan ; Zhang, Zhao ; Mills, Tingting ; Chen, Ning-Yuan ; Kim, Yoonjin ; Muge Ozguc, Fatma ; Diao, Lixia ; Karmouty-Quintana, Harry ; Xia, Yang ; Kellems, Rodney E ; Chen, Zheng ; Blackburn, Michael R ; Yoo, Seung-Hee ; Shyu, Ann-Bin ; Mills, Gordon B ; Han, Leng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-4039fa05fcb8b6471d53a1854249b543155dbd375cd5ef574a0962801ed8b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3' Untranslated Regions</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Follow-Up Studies</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genome, Human</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Poly(A)-Binding Protein I - genetics</topic><topic>Polyadenylation</topic><topic>Prognosis</topic><topic>RNA, Messenger - genetics</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yu</creatorcontrib><creatorcontrib>Ye, Youqiong</creatorcontrib><creatorcontrib>Lou, Yanyan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Cai, Chunyan</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Mills, Tingting</creatorcontrib><creatorcontrib>Chen, Ning-Yuan</creatorcontrib><creatorcontrib>Kim, Yoonjin</creatorcontrib><creatorcontrib>Muge Ozguc, Fatma</creatorcontrib><creatorcontrib>Diao, Lixia</creatorcontrib><creatorcontrib>Karmouty-Quintana, Harry</creatorcontrib><creatorcontrib>Xia, Yang</creatorcontrib><creatorcontrib>Kellems, Rodney E</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Blackburn, Michael R</creatorcontrib><creatorcontrib>Yoo, Seung-Hee</creatorcontrib><creatorcontrib>Shyu, Ann-Bin</creatorcontrib><creatorcontrib>Mills, Gordon B</creatorcontrib><creatorcontrib>Han, Leng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JNCI : Journal of the National Cancer Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yu</au><au>Ye, Youqiong</au><au>Lou, Yanyan</au><au>Yang, Yang</au><au>Cai, Chunyan</au><au>Zhang, Zhao</au><au>Mills, Tingting</au><au>Chen, Ning-Yuan</au><au>Kim, Yoonjin</au><au>Muge Ozguc, Fatma</au><au>Diao, Lixia</au><au>Karmouty-Quintana, Harry</au><au>Xia, Yang</au><au>Kellems, Rodney E</au><au>Chen, Zheng</au><au>Blackburn, Michael R</au><au>Yoo, Seung-Hee</au><au>Shyu, Ann-Bin</au><au>Mills, Gordon B</au><au>Han, Leng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Characterization of Alternative Polyadenylation in Human Cancer</atitle><jtitle>JNCI : Journal of the National Cancer Institute</jtitle><addtitle>J Natl Cancer Inst</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>110</volume><issue>4</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>0027-8874</issn><eissn>1460-2105</eissn><abstract>Alternative polyadenylation (APA) is emerging as a major post-transcriptional mechanism for gene regulation, and dysregulation of APA contributes to several human diseases. However, the functional consequences of APA in human cancer are not fully understood. Particularly, there is no large-scale analysis in cancer cell lines.
We characterized the global APA profiles of 6398 patient samples across 17 cancer types from The Cancer Genome Atlas and 739 cancer cell lines from the Cancer Cell Line Encyclopedia. We built a linear regression model to explore the correlation between APA factors and APA events across different cancer types. We used Spearman correlation to assess the effects of APA events on drug sensitivity and the Wilcoxon rank-sum test or Cox proportional hazards model to identify clinically relevant APA events.
We revealed a striking global 3'UTR shortening in cancer cell lines compared with tumor samples. Our analysis further suggested PABPN1 as the master regulator in regulating APA profile across different cancer types. Furthermore, we showed that APA events could affect drug sensitivity, especially of drugs targeting chromatin modifiers. Finally, we identified 1971 clinically relevant APA events, as well as alterations of APA in clinically actionable genes, suggesting that analysis of the complexity of APA profiles could have clinical utility.
Our study highlights important roles for APA in human cancer, including reshaping cellular pathways and regulating specific gene expression, exemplifying the complex interplay between APA and other biological processes and yielding new insights into the action mechanism of cancer drugs.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>29106591</pmid><doi>10.1093/jnci/djx223</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8874 |
ispartof | JNCI : Journal of the National Cancer Institute, 2018-04, Vol.110 (4), p.379-389 |
issn | 0027-8874 1460-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6059203 |
source | Oxford Journals Online |
subjects | 3' Untranslated Regions Biomarkers, Tumor - genetics Follow-Up Studies Gene Expression Regulation, Neoplastic Genome, Human High-Throughput Nucleotide Sequencing Humans Neoplasms - genetics Neoplasms - pathology Poly(A)-Binding Protein I - genetics Polyadenylation Prognosis RNA, Messenger - genetics Tumor Cells, Cultured |
title | Comprehensive Characterization of Alternative Polyadenylation in Human Cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Characterization%20of%20Alternative%20Polyadenylation%20in%20Human%20Cancer&rft.jtitle=JNCI%20:%20Journal%20of%20the%20National%20Cancer%20Institute&rft.au=Xiang,%20Yu&rft.date=2018-04-01&rft.volume=110&rft.issue=4&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=0027-8874&rft.eissn=1460-2105&rft_id=info:doi/10.1093/jnci/djx223&rft_dat=%3Cproquest_pubme%3E1961033765%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-4039fa05fcb8b6471d53a1854249b543155dbd375cd5ef574a0962801ed8b9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1961033765&rft_id=info:pmid/29106591&rfr_iscdi=true |