Loading…

Mapping gene regulatory networks from single-cell omics data

Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in functional genomics 2018-07, Vol.17 (4), p.246-254
Main Authors: Fiers, Mark W E J, Minnoye, Liesbeth, Aibar, Sara, Bravo González-Blas, Carmen, Kalender Atak, Zeynep, Aerts, Stein
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-b1a9a917d37c0d97952208ee23ae0da3407451ff5d31857e46fa0998a4dfeea13
cites cdi_FETCH-LOGICAL-c478t-b1a9a917d37c0d97952208ee23ae0da3407451ff5d31857e46fa0998a4dfeea13
container_end_page 254
container_issue 4
container_start_page 246
container_title Briefings in functional genomics
container_volume 17
creator Fiers, Mark W E J
Minnoye, Liesbeth
Aibar, Sara
Bravo González-Blas, Carmen
Kalender Atak, Zeynep
Aerts, Stein
description Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.
doi_str_mv 10.1093/bfgp/elx046
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bfgp/elx046</oup_id><sourcerecordid>1989585952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b1a9a917d37c0d97952208ee23ae0da3407451ff5d31857e46fa0998a4dfeea13</originalsourceid><addsrcrecordid>eNp9kMtLw0AQxhdRbKk9eZecRJDYfeWxIIIUX1DxoudlmszGaJKNu4na_96UatGLc5mB-fHNNx8hh4yeMarEbGmKdobVJ5XxDhlzKlnI4yjZ3c5SjcjU-xc6lGBSMrpPRlwJyblgY3J-D21bNkVQYIOBw6KvoLNuFTTYfVj36gPjbB34AakwzLCqAluXmQ9y6OCA7BmoPE6_-4Q8XV89zm_DxcPN3fxyEWYySbtwyUCBYkkukozmKlER5zRF5AKQ5iAkTWTEjIlywdIoQRkboEqlIHODCExMyMVGt-2XNeYZNp2DSreurMGttIVS_9005bMu7LuOaSx4ogaBk28BZ9969J2uS79-Bhq0vddMpSpKo8HYgJ5u0MxZ7x2a7RlG9TpyvY5cbyIf6KPfzrbsT8ADcLwBbN_-q_QF_QiLgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989585952</pqid></control><display><type>article</type><title>Mapping gene regulatory networks from single-cell omics data</title><source>Oxford Journals Online</source><creator>Fiers, Mark W E J ; Minnoye, Liesbeth ; Aibar, Sara ; Bravo González-Blas, Carmen ; Kalender Atak, Zeynep ; Aerts, Stein</creator><creatorcontrib>Fiers, Mark W E J ; Minnoye, Liesbeth ; Aibar, Sara ; Bravo González-Blas, Carmen ; Kalender Atak, Zeynep ; Aerts, Stein</creatorcontrib><description>Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.</description><identifier>ISSN: 2041-2649</identifier><identifier>ISSN: 2041-2657</identifier><identifier>EISSN: 2041-2657</identifier><identifier>DOI: 10.1093/bfgp/elx046</identifier><identifier>PMID: 29342231</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Epigenomics - methods ; Gene Expression Profiling - methods ; Gene Regulatory Networks ; Sequence Analysis, RNA - methods ; Single-Cell Analysis - methods</subject><ispartof>Briefings in functional genomics, 2018-07, Vol.17 (4), p.246-254</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b1a9a917d37c0d97952208ee23ae0da3407451ff5d31857e46fa0998a4dfeea13</citedby><cites>FETCH-LOGICAL-c478t-b1a9a917d37c0d97952208ee23ae0da3407451ff5d31857e46fa0998a4dfeea13</cites><orcidid>0000-0001-5694-2409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29342231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiers, Mark W E J</creatorcontrib><creatorcontrib>Minnoye, Liesbeth</creatorcontrib><creatorcontrib>Aibar, Sara</creatorcontrib><creatorcontrib>Bravo González-Blas, Carmen</creatorcontrib><creatorcontrib>Kalender Atak, Zeynep</creatorcontrib><creatorcontrib>Aerts, Stein</creatorcontrib><title>Mapping gene regulatory networks from single-cell omics data</title><title>Briefings in functional genomics</title><addtitle>Brief Funct Genomics</addtitle><description>Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.</description><subject>Epigenomics - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Regulatory Networks</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis - methods</subject><issn>2041-2649</issn><issn>2041-2657</issn><issn>2041-2657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kMtLw0AQxhdRbKk9eZecRJDYfeWxIIIUX1DxoudlmszGaJKNu4na_96UatGLc5mB-fHNNx8hh4yeMarEbGmKdobVJ5XxDhlzKlnI4yjZ3c5SjcjU-xc6lGBSMrpPRlwJyblgY3J-D21bNkVQYIOBw6KvoLNuFTTYfVj36gPjbB34AakwzLCqAluXmQ9y6OCA7BmoPE6_-4Q8XV89zm_DxcPN3fxyEWYySbtwyUCBYkkukozmKlER5zRF5AKQ5iAkTWTEjIlywdIoQRkboEqlIHODCExMyMVGt-2XNeYZNp2DSreurMGttIVS_9005bMu7LuOaSx4ogaBk28BZ9969J2uS79-Bhq0vddMpSpKo8HYgJ5u0MxZ7x2a7RlG9TpyvY5cbyIf6KPfzrbsT8ADcLwBbN_-q_QF_QiLgg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Fiers, Mark W E J</creator><creator>Minnoye, Liesbeth</creator><creator>Aibar, Sara</creator><creator>Bravo González-Blas, Carmen</creator><creator>Kalender Atak, Zeynep</creator><creator>Aerts, Stein</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5694-2409</orcidid></search><sort><creationdate>20180701</creationdate><title>Mapping gene regulatory networks from single-cell omics data</title><author>Fiers, Mark W E J ; Minnoye, Liesbeth ; Aibar, Sara ; Bravo González-Blas, Carmen ; Kalender Atak, Zeynep ; Aerts, Stein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b1a9a917d37c0d97952208ee23ae0da3407451ff5d31857e46fa0998a4dfeea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Epigenomics - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Regulatory Networks</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Fiers, Mark W E J</creatorcontrib><creatorcontrib>Minnoye, Liesbeth</creatorcontrib><creatorcontrib>Aibar, Sara</creatorcontrib><creatorcontrib>Bravo González-Blas, Carmen</creatorcontrib><creatorcontrib>Kalender Atak, Zeynep</creatorcontrib><creatorcontrib>Aerts, Stein</creatorcontrib><collection>Oxford Academic Journals (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in functional genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiers, Mark W E J</au><au>Minnoye, Liesbeth</au><au>Aibar, Sara</au><au>Bravo González-Blas, Carmen</au><au>Kalender Atak, Zeynep</au><au>Aerts, Stein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping gene regulatory networks from single-cell omics data</atitle><jtitle>Briefings in functional genomics</jtitle><addtitle>Brief Funct Genomics</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>17</volume><issue>4</issue><spage>246</spage><epage>254</epage><pages>246-254</pages><issn>2041-2649</issn><issn>2041-2657</issn><eissn>2041-2657</eissn><abstract>Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29342231</pmid><doi>10.1093/bfgp/elx046</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5694-2409</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-2649
ispartof Briefings in functional genomics, 2018-07, Vol.17 (4), p.246-254
issn 2041-2649
2041-2657
2041-2657
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063279
source Oxford Journals Online
subjects Epigenomics - methods
Gene Expression Profiling - methods
Gene Regulatory Networks
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
title Mapping gene regulatory networks from single-cell omics data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20gene%20regulatory%20networks%20from%20single-cell%20omics%20data&rft.jtitle=Briefings%20in%20functional%20genomics&rft.au=Fiers,%20Mark%20W%20E%20J&rft.date=2018-07-01&rft.volume=17&rft.issue=4&rft.spage=246&rft.epage=254&rft.pages=246-254&rft.issn=2041-2649&rft.eissn=2041-2657&rft_id=info:doi/10.1093/bfgp/elx046&rft_dat=%3Cproquest_pubme%3E1989585952%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-b1a9a917d37c0d97952208ee23ae0da3407451ff5d31857e46fa0998a4dfeea13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989585952&rft_id=info:pmid/29342231&rft_oup_id=10.1093/bfgp/elx046&rfr_iscdi=true