Loading…
Ambient Processed, Water-Stable, Aqueous-Gated sub 1 V n-type Carbon Nanotube Field Effect Transistor
In this paper we report for the first time an n-type carbon nanotube field effect transistor which is air- and water-stable, a necessary requirement for electrolyte gated CMOS circuit operation. The device is obtained through a simple process, where the native p-type transistor is converted to an n-...
Saved in:
Published in: | Scientific reports 2018-07, Vol.8 (1), p.11386-8, Article 11386 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we report for the first time an n-type carbon nanotube field effect transistor which is air- and water-stable, a necessary requirement for electrolyte gated CMOS circuit operation. The device is obtained through a simple process, where the native p-type transistor is converted to an n-type. This conversion is achieved by applying a tailor composed lipophilic membrane containing ion exchanger on the active channel area of the transistor. To demonstrate the use of this transistor in sensing applications, a pH sensor is fabricated. An electrolyte gated CMOS inverter using the herein proposed novel n-type transistor and a classical p-type transistor is demonstrated. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-29882-w |